留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

g-C3N4/BiOCl复合光催化剂作为2D/2D异质结用于光催化降解染料性能研究

吴健博 石亮 郑小强 张明剑 陈丽娟

吴健博, 石亮, 郑小强, 等. g-C3N4/BiOCl复合光催化剂作为2D/2D异质结用于光催化降解染料性能研究[J]. 复合材料学报, 2023, 40(1): 323-333. doi: 10.13801/j.cnki.fhclxb.20220225.006
引用本文: 吴健博, 石亮, 郑小强, 等. g-C3N4/BiOCl复合光催化剂作为2D/2D异质结用于光催化降解染料性能研究[J]. 复合材料学报, 2023, 40(1): 323-333. doi: 10.13801/j.cnki.fhclxb.20220225.006
WU Jianbo, SHI Liang, ZHENG Xiaoqiang, et al. g-C3N4/BiOCl composite photocatalyst used as 2D/2D heterojunction for photocatalytic degradation of dyes[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 323-333. doi: 10.13801/j.cnki.fhclxb.20220225.006
Citation: WU Jianbo, SHI Liang, ZHENG Xiaoqiang, et al. g-C3N4/BiOCl composite photocatalyst used as 2D/2D heterojunction for photocatalytic degradation of dyes[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 323-333. doi: 10.13801/j.cnki.fhclxb.20220225.006

g-C3N4/BiOCl复合光催化剂作为2D/2D异质结用于光催化降解染料性能研究

doi: 10.13801/j.cnki.fhclxb.20220225.006
基金项目: 国家自然科学基金(21406058);湖南省自然科学基金(2021JJ30237)
详细信息
    通讯作者:

    陈丽娟,博士,教授,硕士生导师,研究方向为光催化、多相催化 E-mail: ljchen11@163.com

  • 中图分类号: G305

g-C3N4/BiOCl composite photocatalyst used as 2D/2D heterojunction for photocatalytic degradation of dyes

Funds: National Natural Science Foundation of China(21406058); Natural Science Foundation of Hunan Province (2021JJ30237)
  • 摘要: 为扩大BiOCl的太阳光吸收范围,获得更高效的光催化剂,本文通过水热法制备了石墨相氮化碳(g-C3N4)/BiOCl (2D/2D)复合光催化剂并对其进行详细表征。结构与形貌表征结果显示BiOCl纳米片沉积在层状g-C3N4表面,形成了2D/2D面-面复合结构;光电化学性质分析表明形成的异质结构能有效扩展光吸收频率范围,促进光生载流子分离和迁移,从而有利于光催化性能的提高。以500 W氙灯模拟太阳光源,光催化降解罗丹明B(RhB)的结果表明g-C3N4/BiOCl异质结的光催化降解活性远高于单纯的g-C3N4和BiOCl。其中9wt%g-C3N4/BiOCl表现出了最优越的光催化活性,在180 min内对RhB的降解率为94%,其表观速率常数Kapp值为g-C3N4和BiOCl的5.7和3.6倍。同时对g-C3N4/BiOCl异质结的光催化机制展开研究,结合复合催化剂电子结构和自由基捕获实验提出了在染料敏化作用下RhB的光催化降解机制。

     

  • 图  1  g-C3N4、BiOCl及不同g-C3N4质量分数的g-C3N4/BiOCl异质结的XRD图谱

    Figure  1.  XRD patterns of g-C3N4, BiOCl and g-C3N4/BiOCl heterojunction with different mass fraction

    图  2  (a) g-C3N4、BiOCl和9wt%g-C3N4/BiOCl的XPS全谱;((b)~(d)) BiOCl和9wt%g-C3N4/BiOCl的Bi4f、O1s, Cl2p高分辨XPS光谱;((e)、(f)) g-C3N4和9wt%g-C3N4/BiOCl的C1s、N1s高分辨XPS光谱

    Figure  2.  (a) XPS survey spectra of g-C3N4, BiOCl and 9wt%g-C3N4/BiOCl; ((b)-(d)) Bi4f, O1s and Cl2p high-resolution XPS spectra of BiOCl and 9wt%g-C3N4/BiOCl, respectively; ((e), (f)) C1s, N1s high-resolution XPS spectra of g-C3N4 and 9wt%g-C3N4/BiOCl

    图  3  ((a)、(b)) BiOCl的SEM、TEM图像;((c)、(d))为g-C3N4的SEM、TEM图像;((e)、(f))为9wt%g-C3N4/BiOCl的TEM和HRTEM图像

    Figure  3.  ((a), (b)) SEM and TEM images of BiOCl; ((c), (d)) SEM and TEM images of g-C3N4; ((e), (f)) TEM and HRTEM images of 9wt%g-C3N4/BiOCl

    d—Fringe spacing

    图  4  g-C3N4、BiOCl及9wt%g-C3N4/BiOCl的N2吸附-脱附等温线(插图为g-C3N4、BiOCl及9wt%g-C3N4/BiOCl的孔径分布曲线)

    Figure  4.  N2 adsorption-desorption isotherms of g-C3N4, BiOCl and 9wt%g-C3N4/BiOCl (Illustrated with aperture distribution curves of g-C3N4, BiOCl and 9wt%g-C3N4/BiOCl)

    图  5  g-C3N4、BiOCl和g-C3N4/BiOCl异质结的紫外-可见漫反射光谱 (a) 和能隙图 (b)

    Figure  5.  UV-visible diffuse reflectance spectra (a) and energy gap diagram (b) of g-C3N4, BiOCl and g-C3N4/BiOCl heterojunction

    α—Absorbance; h—Planck constant; v—Frequency

    图  6  g-C3N4、BiOCl和g-C3N4/BiOCl异质结的PL图谱

    Figure  6.  PL spectra of g-C3N4, BiOCl and g-C3N4/BiOCl heterojunction

    图  7  g-C3N4、BiOCl、9wt%g-C3N4/BiOCl的电化学阻抗谱 (a) 及瞬态光电流响应图 (b)

    Figure  7.  Electrochemical impedance spectra (a) and transient photocurrent response diagram (b) of g-C3N4, BiOCl and 9wt%g-C3N4/BiOCl

    图  8  (a) g-C3N4、BiOCl及g-C3N4/BiOCl异质结对罗丹明B (RhB)的降解率;(b) g-C3N4、BiOCl及g-C3N4/BiOCl异质结对 RhB的降解反应动力学

    Figure  8.  (a) Degradation rate of rhodamine B (RhB) by g-C3N4, BiOCl and g-C3N4/BiOCl heterojunction; (b) Kinetics of RhB degradation over g-C3N4, BiOCl and g-C3N4/BiOCl heterojunction

    C/C0—Ratio of the concentration of the organic pollutant solution after a certain period of time to the concentration of the organic pollutant solution before the photocatalytic reaction; Kapp—Apparent rate constant of photocatalyst degradation of organic pollutants

    图  9  (a) 9wt%g-C3N4/BiOCl对RhB的降解吸收光谱;(b) 500 W氙灯照射下,9wt%g-C3N4/BiOCl催化降解RhB的循环试验

    Figure  9.  (a) Degradation absorption spectra of RhB by 9wt%g-C3N4/BiOCl; (b) Cyclic degradation of RhB by 9wt%g-C3N4/BiOCl under 500 W xenon lamp

    图  10  9wt%g-C3N4/BiOCl在模拟太阳光照射下的活性物种捕获实验

    Figure  10.  Active species capture experiment of 9wt%g-C3N4/BiOCl under simulated sunlight

    IPA—Isopropyl alcohol; p-BQ—1,4-benzoquinone; EDTA-2Na—Ethylenediaminetetraacetic acid disodium salt

    图  11  g-C3N4 (a) 和BiOCl (b) 的Mott-Schottky曲线

    Figure  11.  Mott-Schottky curves of g-C3N4 (a) and BiOCl (b)

    C−2—Reciprocal of interface capacitance squared

    图  12  9wt%g-C3N4/BiOCl 光催化降解RhB的催化机制

    Figure  12.  Catalytic mechanism of 9wt%g-C3N4/BiOCl photocatalytic degradation of RhB

    CB—Conduction band; VB—Valence band; RhB—Rhodamine B

  • [1] LI M L, ZHANG L X, WU M Y, et al. Mesostructured CeO2/g-C3N4 nanocomposites: Remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations[J]. Nano Energy,2016,19:145-155. doi: 10.1016/j.nanoen.2015.11.010
    [2] CHEN C S, MEI W, WANG C, et al. Synthesis of a flower-like SnO/ZnO nanostructure with high catalytic activity and stability under natural sunlight[J]. Journal of Alloys and Compounds,2020,826:154122. doi: 10.1016/j.jallcom.2020.154122
    [3] CHEN L J, SHI L, WU J B, et al. N-SrTiO3 nanoparticle/BiOBr nanosheet as 0D/2D heterojunctions for enhanced visible light photocatalytic dye degradation[J]. Materials Science and Engineering: B,2020,261:114667. doi: 10.1016/j.mseb.2020.114667
    [4] MENG X C, ZHANG Z S. Bismuth-based photocatalytic semiconductors: Introduction, challenges and possible approaches[J]. Journal of Molecular Catalysis A: Chemical,2016,423:533-549. doi: 10.1016/j.molcata.2016.07.030
    [5] WANG Q Z, HUI J, HUANG T J, et al. The preparation of BiOCl photocatalyst and its performance of photodegradation on dyes[J]. Materials Science in Semiconductor Processing,2014,17:87-93. doi: 10.1016/j.mssp.2013.08.018
    [6] ZHANG X, WANG X B, WANG L W, et al. Synthesis of a highly efficient BiOCl single-crystal nanodisk photocatalyst with exposing {001} facets[J]. Applied Materials and Interfaces,2014,6(10):7766-7772. doi: 10.1021/am5010392
    [7] CHEN H B, YU X, ZHU Y, et al. Controlled synthesis of {001} facets-dominated dye-sensitized BiOCl with high photocatalytic efficiency under visible-light irradiation[J]. Journal of Nanoparticl Research,2016,18:225. doi: 10.1007/s11051-016-3529-4
    [8] CHEN F, LIU H Q, BAGWASI S, et al. Photocatalytic study of BiOCl for degradation of organic pollutants under UV irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry,2010,215(1):76-80. doi: 10.1016/j.jphotochem.2010.07.026
    [9] LI B X, SHAO L Z, WANG R S, et al. Interfacial synergism of Pd-decorated BiOCl ultrathin nanosheets for selective oxidation of aromatic alcohols[J]. Journal of Materials Chemistry A,2018,6(15):6344-6355. doi: 10.1039/C8TA00449H
    [10] YU C L, HE H B, LIU X Q, et al. Novel SiO2 nanoparticle-decorated BiOCl nanosheets exhibiting high photocatalytic performances for the removal of organic pollutants[J]. Chinese Journal of Catalysis,2019,40(8):1212-1221. doi: 10.1016/S1872-2067(19)63359-0
    [11] PAN J B, LIU J J, ZUO S L, et al. Synthesis of cuboid BiOCl nanosheets coupled with CdS quantum dots by region-selective deposition process with enhanced photocatalytic activity[J]. Materials Research Bulletin,2018,103:216-224. doi: 10.1016/j.materresbull.2018.03.043
    [12] PAN J B, LIU J J, ZUO S L, et al. Structure of Z-scheme CdS/CQDs/BiOCl heterojunction with enhanced photocatalytic activity for environmental pollutant elimination[J]. Applied Surface Science,2018,444:177-186. doi: 10.1016/j.apsusc.2018.01.189
    [13] WANG Q, LI P J, ZHANG Z, et al. Kinetics and mechanism insights into the photodegradation of tetracycline hydrochloride and ofloxacin mixed antibiotics with the flower-like BiOCl/TiO2 heterojunction[J]. Journal of Photochemistry and Photobiology A: Chemistry,2019,378:114-124. doi: 10.1016/j.jphotochem.2019.04.028
    [14] ZHAO S, ZHANG Y W, ZHOU Y M, et al. Reactable polyelectrolyte-assisted synthesis of BiOCl with enhanced photocatalytic activity[J]. ACS Sustainable Chemistry and Engineering,2017,5(2):1416-1424. doi: 10.1021/acssuschemeng.6b01987
    [15] HU J L, FAN W J, UE W Q, et al. Insights into the photosensitivity activity of BiOCl under visible light irradiation[J]. Applied Catalysis B: Environmental,2014,158-159:182-189. doi: 10.1016/j.apcatb.2014.04.019
    [16] ONG W J. 2D/2D graphitic carbon nitride (g-C3N4) heterojunction nanocomposites for photocatalysis: Why does face-to-face interface matter[J]. Frontiers in Materials,2017,4:11. doi: 10.3389/fmats.2017.00011
    [17] TIAN N, ZHANG Y H, LI X W, et al. Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution[J]. Nano Energy,2017,38:72-81. doi: 10.1016/j.nanoen.2017.05.038
    [18] ZHANG Y, LIN L H, WANG B, et al. Graphitic carbon nitride polymers toward sustainable photoredox catalysis[J]. Angewandte Chemie International Edition,2015,54(44):12868-12884. doi: 10.1002/anie.201501788
    [19] LI J Y, CUI W, SUN Y J, et al. Directional electrons delivery via vertical channel between g-C3N4 layers promoting the photocatalysis efficiency[J]. Journal of Materials Chemistry A,2017,5(19):9358-9364. doi: 10.1039/C7TA02183F
    [20] CHEN Y, WANG X C. Template-free synthesis of hollow g-C3N4 polymer with vesicle structure for enhanced photocatalytic water splitting[J]. The Journal of Physical Chemistry,2018,122(7):3786-3793. doi: 10.1021/acs.jpcc.7b12496
    [21] LIANG D, HUANG Y L, WU F, et al. In situ synthesis of g-C3N4/TiO2 with {001} and {101} facets coexposed for water remediation[J]. Applied Surface Science,2019,487:322-334. doi: 10.1016/j.apsusc.2019.05.088
    [22] ZHU X, WANG Y T, GUO Y, et al. Environmental-friendly synthesis of heterojunction photocatalysts g-C3N4/BiPO4 with enhanced photocatalytic performance[J]. Applied Surface Science,2021,544:148872. doi: 10.1016/j.apsusc.2020.148872
    [23] ZHAN S, ZHOU F, HUANG N B, et al. g-C3N4/ZnWO4 films: Preparation and its enhanced photocatalytic decomposition of phenol in UV[J]. Applied Surface Science,2015,358:328-335. doi: 10.1016/j.apsusc.2015.07.180
    [24] ZHANG L, NIU C G, ZHAO X F, et al. Ultrathin BiOCl single-crystalline nanosheets with large reactive facets area and high electron mobility efficiency: A superior candidate for high-performance dye self-photosensitization photocatalytic fuel cell[J]. ACS Applied Materials and Interfaces,2018,10(46):39723-39734. doi: 10.1021/acsami.8b14227
    [25] ZOU Y J, SHI J W, MA D D, et al. In situ synthesis of C-doped TiO2@g-C3N4 core-shell hollow nanospheres with enhanced visible-light photocatalytic activity for H2 evolution[J]. Chemical Engineering Journal,2017,322:435-444. doi: 10.1016/j.cej.2017.04.056
    [26] HUANG Z F, SONG J J, PAN L, et al. Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution[J]. Nano Energy,2015,12:646-656. doi: 10.1016/j.nanoen.2015.01.043
    [27] SHE X J, WU J J, ZHONG J, et al. Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency[J]. Nano Energy,2016,27:138-146. doi: 10.1016/j.nanoen.2016.06.042
    [28] MA D M, ZHONG J B, LI J Z, rt al. Enhanced photocatalytic activity of BiOCl by C70 modification and mechanism insight[J]. Applied Surface Science,2018,443:497-505. doi: 10.1016/j.apsusc.2018.03.018
    [29] HU T P, YANG Y, DAI K, et al. A novel Z-scheme Bi2MoO6/BiOBr photocatalyst for enhanced photocatalytic activity under visible light irradiation[J]. Applied Surface Science,2018,456:473-481. doi: 10.1016/j.apsusc.2018.06.186
    [30] CHANG F, WU F Y, YAN W J, et al. Oxygen-rich bismuth oxychloride Bi12O17Cl2 materials: Construction, characterization, and sonocatalytic degradation performance[J]. Ultrason Sonochem,2019,50:105-113. doi: 10.1016/j.ultsonch.2018.09.005
    [31] LIU C, ZHOU J L, SU J Z, et al. Turning the unwanted surface bismuth enrichment to favourable BiVO4/BiOCl heterojunction for enhanced photoelectrochemical performance[J]. Applied Catalysis B: Environmental,2019,241:506-513. doi: 10.1016/j.apcatb.2018.09.060
    [32] GAO J C, GAO Y, SUI Z Y, et al. Hydrothermal synthesis of BiOBr/FeWO4 composite photocatalysts and their photocatalytic degradation of doxycycline[J]. Journal of Alloys and Compounds,2018,732:43-51. doi: 10.1016/j.jallcom.2017.10.092
    [33] ZHU M Y, LIU Q, CHEN W, et al. Boosting the visible-light photoactivity of BiOCl/BiVO4/N-GQD ternary heterojunctions based on internal Z-scheme charge transfer of N-GQDs: Simultaneous band gap narrowing and carrier lifetime prolonging[J]. ACS Applied Materials and Interfaces,2017,9(44):38832-38841. doi: 10.1021/acsami.7b14412
    [34] ZHANG G G, HUANG C J, WANG X C. Dispersing molecular cobalt in graphitic carbon nitride frameworks for photocatalytic water oxidation[J]. Small,2015,11(9-10):1215-1221. doi: 10.1002/smll.201402636
    [35] JIN X Y, GUAN Q M, TIAN T, et al. In2O3/boron doped g-C3N4 heterojunction catalysts with remarkably enhanced visible-light photocatalytic efficiencies[J]. Applied Surface Science,2020,504:144241. doi: 10.1016/j.apsusc.2019.144241
    [36] TAO R, LI X H, LI X W, et al. TiO2/SrTiO3/g-C3N4 ternary heterojunction nanofibers: Gradient energy band, cascade charge transfer, enhanced photocatalytic hydrogen evolution, and nitrogen fixation[J]. Nanoscale,2020,12(15):8320-8329. doi: 10.1039/D0NR00219D
    [37] GAO X Y, PENG W, TANG G B, et al. Highly efficient and visible-light-driven BiOCl for photocatalytic degradation of carbamazepine[J]. Journal of Alloys and Compounds,2018,757:455-465. doi: 10.1016/j.jallcom.2018.05.081
    [38] XIAO Y, PENG Z Y, ZHANG S, et al. Z-scheme CdIn2S4/BiOCl nanosheet face-to-face heterostructure: In-situ synthesis and enhanced interfacial charge transfer for high-efficient photocatalytic performance[J]. Journal of Materials Science,2019,54:9573-9590. doi: 10.1007/s10853-019-03401-2
    [39] GUO L A, YOU Y, HUANG H W, et al. Z-scheme g-C3N4/Bi2O2[BO2(OH)] heterojunction for enhanced photocatalytic CO2 reduction[J]. Journal of Colloid and Interface Science,2020,568:139-147. doi: 10.1016/j.jcis.2020.02.025
    [40] DENG C H, HU H M, YU H, et al. Facile microwave-assisted fabrication of CdS/BiOCl nanostructures with enhanced visible-light-driven photocatalytic activity[J]. Journal of Materials Science,2021,56:2994-3010. doi: 10.1007/s10853-020-05427-3
    [41] GUO S E, DENG Z P, LI M X, et al. Phosphorus-doped carbon nitride tubes with a layered micronanostructure for enhanced visible-light photocatalytic hydrogen evolution[J]. Angewandte Chemie,2016,128(5):1862-1866. doi: 10.1002/ange.201508505
    [42] RAN J R, MA T Y, GAO G P, et al. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production[J]. Energy and Environmental Science,2015,8(12):3708-3717. doi: 10.1039/C5EE02650D
    [43] PENG B Y, ZHANG S S, YANG S Y, et al. Synthesis and characterization of g-C3N4/Cu2O composite catalyst with enhanced photocatalytic activity under visible light irradiation[J]. Materials Research Bulletin,2014,56:19-24. doi: 10.1016/j.materresbull.2014.04.042
    [44] BING X M, JIAN X Y, CHU J H, et al. Hierarchically porous BiOBr/ZnAl1.8Fe0.2O4 and its excellent adsorption and photocatalysis activity[J]. Materials Research Bulletin,2019,110:1-12. doi: 10.1016/j.materresbull.2018.10.006
    [45] ZHENG J H, ZHANG L. Incorporation of CoO nanoparticles in 3D marigoldflower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability[J]. Applied Catalysis B: Environmental,2018,237:1-8. doi: 10.1016/j.apcatb.2018.05.060
    [46] WANG J L, YU Y, ZHANG L Z. Highly efficient photocatalytic removal of sodium pentachlorophenate with Bi3O4Br under visible light[J]. Applied Catalysis B: Environmental,2013,136-137:112-121. doi: 10.1016/j.apcatb.2013.02.009
    [47] CHEN C C, MA W H, ZHAO J C. Semiconductor-mediated photodegradation of pollutans under visible-light irradiation[J]. Chemical Society Reviews,2010,39(11):4206-4219. doi: 10.1039/b921692h
    [48] FUJISHIMA A, ZHANG X T. Titanium dioxide photocatalysis: Present situation and future approaches[J]. Comptes Rendus Chimie,2006,9(5-6):750-760. doi: 10.1016/j.crci.2005.02.055
  • 加载中
图(12)
计量
  • 文章访问数:  1098
  • HTML全文浏览量:  678
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-17
  • 修回日期:  2022-01-14
  • 录用日期:  2022-01-22
  • 网络出版日期:  2022-02-28
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回