留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti3C2Tx-MXene上浆剂表面改性高模量碳纤维及其环氧树脂基复合材料界面性能

董玉双 张学军 田艳红 黄玲

董玉双, 张学军, 田艳红, 等. Ti3C2Tx-MXene上浆剂表面改性高模量碳纤维及其环氧树脂基复合材料界面性能[J]. 复合材料学报, 2022, 39(8): 3712-3722. doi: 10.13801/j.cnki.fhclxb.20210918.001
引用本文: 董玉双, 张学军, 田艳红, 等. Ti3C2Tx-MXene上浆剂表面改性高模量碳纤维及其环氧树脂基复合材料界面性能[J]. 复合材料学报, 2022, 39(8): 3712-3722. doi: 10.13801/j.cnki.fhclxb.20210918.001
DONG Yushuang, ZHANG Xuejun, TIAN Yanhong, et al. Ti3C2Tx-MXene sizing agent surface modified high modulus carbon fiber and its epoxy resin matrix composites interface properties[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3712-3722. doi: 10.13801/j.cnki.fhclxb.20210918.001
Citation: DONG Yushuang, ZHANG Xuejun, TIAN Yanhong, et al. Ti3C2Tx-MXene sizing agent surface modified high modulus carbon fiber and its epoxy resin matrix composites interface properties[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3712-3722. doi: 10.13801/j.cnki.fhclxb.20210918.001

Ti3C2Tx-MXene上浆剂表面改性高模量碳纤维及其环氧树脂基复合材料界面性能

doi: 10.13801/j.cnki.fhclxb.20210918.001
详细信息
    通讯作者:

    张学军,博士,研究员,硕士生导师,研究方向为高模量碳纤维及其复合材料  E-mail:zhangxj@mail.buct.edu.cn

  • 中图分类号: TB332

Ti3C2Tx-MXene sizing agent surface modified high modulus carbon fiber and its epoxy resin matrix composites interface properties

  • 摘要: 为了改善高模量碳纤维(HMCF)表面润湿性及增强其复合材料界面性能,本文采用机械共混法,将尺寸为100~500 nm的少层Ti3C2Tx-MXene水分散液与水性环氧乳液上浆剂进行复配,制备了适用于HMCF的Ti3C2Tx-MXene/环氧树脂(EP)改性环氧乳液复合上浆剂,并以连续上浆技术在HMCF表面构筑了富含Ti3C2Tx-MXene的特性涂层,以期改善HMCF/EP复合材料的界面结合性能。通过SEM、XPS和动态接触角测试对HMCF的表面形貌、表面化学状态和表面润湿性能进行了表征,并以层间剪切强度(ILSS)和断面形貌测试对HMCF/EP复合材料的界面结合状况进行了分析表征,最后以复合材料的剪切破坏模型对Ti3C2Tx-MXene/EP复合上浆剂改性的HMCF/EP复合材料的界面增强机制进行了探讨。结果表明,经Ti3C2Tx-MXene/EP复合上浆剂表面处理后,HMCF表面的O/C(原子比)提高,并赋予其一定量的纳米尺度小凸起微机械结构,改善了HMCF的表面润湿性。当环氧乳液上浆剂固含量为0.8%,Ti3C2Tx-MXene浓度为1.0 mg/mL时,HMCF/EP复合材料的ILSS值提高了23.8%,达到85.9 MPa。

     

  • 图  1  BHM2型高模量碳纤维(HMCF)上浆装置图

    Figure  1.  Sizing device diagram of BHM2 type high modulus carbon fibers (HMCF)

    MXene-SCF—Ti3C2Tx-MXene sized carbon fibers

    图  2  Ti3AlC2-MAX (a)、多层Ti3C2Tx-MXene (b) 的SEM图像,少层Ti3C2Tx-MXene的TEM图像 (c) 和Ti3C2Tx-MXene/环氧树脂(EP)复合上浆剂外观图 (d)

    Figure  2.  SEM image of Ti3AlC2-MAX (a), multi-layer Ti3C2Tx-MXene (b), TEM image of few-layer Ti3C2Tx-MXene (c) and appearance of Ti3C2Tx-MXene/epoxy resin (EP) composite sizing agent (d)

    图  3  Ti3C2Tx-MXene的C1s (a) 和O1s (b) XPS分峰拟合图

    Figure  3.  C1s (a) and O1s (b) XPS peak fitting diagram of Ti3C2Tx-MXene

    图  4  D-HMCF (a)、Ti3C2Tx-0MXene-SCF (b)、Ti3C2Tx-0.5MXene-SCF (c)、Ti3C2Tx-1.0MXene-SCF (d)、Ti3C2Tx-1.5MXene-SCF (e) 和Ti3C2Tx-2.0MXene-SCF (f) 的SEM图像

    Figure  4.  SEM images of D-HMCF (a), Ti3C2Tx-0MXene-SCF (b), Ti3C2Tx-0.5MXene-SCF (c), Ti3C2Tx-1.0MXene-SCF (d), Ti3C2Tx-1.5MXene-SCF (e) and Ti3C2Tx-2.0MXene-SCF (f)

    图  5  不同HMCF的XPS广谱图 (a)、D-HMCF (b)、Ti3C2Tx-0MXene-SCF (c) 和Ti3C2Tx-1.0MXene-SCF (d) 的C1s分峰拟合图谱

    Figure  5.  XPS broad spectrum of different HMCF (a), C1s peak fitting diagrams of D-HMCF (b), Ti3C2Tx-0MXene-SCF (c) and Ti3C2Tx-1.0MXene-SCF (d)

    O/C—Atomic ratio of O/C

    图  6  不同处理HMCF的接触角 (a) 及表面能 (b)

    Figure  6.  Contact angle (a) and surface energy (b) of different HMCF

    图  7  不同HMCF/EP复合材料的层间剪切强度

    Figure  7.  Interlaminar shear strength of different HMCF/EP composites

    图  8  D-HMCF/EP (a)、Ti3C2Tx-0MXene-SCF/EP (b)、Ti3C2Tx-0.5MXene-SCF/EP (c)、Ti3C2Tx-1.0MXene-SCF/EP (d)、Ti3C2Tx-1.5MXene-SCF/EP (e) 和Ti3C2Tx-2.0MXene-SCF/EP (f) 的断面形貌

    Figure  8.  Cross-sectional morphologies of D-HMCF/EP (a), Ti3C2Tx-0MXene-SCF/EP (b), Ti3C2Tx-0.5MXene-SCF/EP (c), Ti3C2Tx-1.0MXene-SCF/EP (d), Ti3C2Tx-1.5MXene-SCF/EP (e) and Ti3C2Tx-2.0MXene-SCF/EP (f)

    图  9  D-HMCF/EP (a)、Ti3C2Tx-0MXene-SCF/EP (b) 和Ti3C2Tx-1.0MXene-SCF/EP (c) 的界面破坏机制图

    Figure  9.  Diagram of the interface destruction mechanism of D-HMCF/EP (a), Ti3C2Tx-0MXene-SCF/EP (b) and Ti3C2Tx-1.0MXene-SCF/EP (c)

    CF—Carbon fibers

    表  1  各样品缩写命名

    Table  1.   Abbreviations used for various samples prepared

    Sample codeDetails
    D-HMCFDesized BHM2 carbon fibers
    U-HMCFBHM2 carbon fibers
    Ti3C2Tx-0MXene-SCF0 mg/mL Ti3C2Tx-MXene/EP composite sizing agent sized carbon fibers
    Ti3C2Tx-0.5MXene-SCF0.5 mg/mL Ti3C2Tx-MXene/EP composite sizing agent sized carbon fibers
    Ti3C2Tx-1.0MXene-SCF1.0 mg/mL Ti3C2Tx-MXene/EP composite sizing agent sized carbon fibers
    Ti3C2Tx-1.5MXene-SCF1.5 mg/mL Ti3C2Tx-MXene/EP composite sizing agent sized carbon fibers
    Ti3C2Tx-2.0MXene-SCF2.0 mg/mL Ti3C2Tx-MXene/EP composite sizing agent sized carbon fibers
    D-HMCF/EPDesized BHM2 carbon fiber reinforced epoxy composites
    U-HMCF/EPBHM2 carbon fiber reinforced epoxy composites
    Ti3C2Tx-0MXene-SCF/EP0 mg/mL Ti3C2Tx-MXene/EP composite sizing agent sized carbon fiber reinforced epoxy composites
    Ti3C2Tx-0.5MXene-SCF/EP0.5 mg/mL Ti3C2Tx-MXene/EP composite sizing agent sized carbon fiber reinforced epoxy composites
    Ti3C2Tx-1.0MXene-SCF/EP1.0 mg/mL Ti3C2Tx-MXene/EP composite sizing agent sized carbon fiber reinforced epoxy composites
    Ti3C2Tx-1.5MXene-SCF/EP1.5 mg/mL Ti3C2Tx-MXene/EP composite sizing agent sized carbon fiber reinforced epoxy composites
    Ti3C2Tx-2.0MXene-SCF/EP2.0 mg/mL Ti3C2Tx-MXene/EP composite sizing agent sized carbon fiber reinforced epoxy composites
    下载: 导出CSV

    表  2  不同HMCF的C1s特征峰结合能及相对含量

    Table  2.   C1s characteristic peak binding energy and relative content of different HMCF

    Functional groupBinding energy/eVRelative content/%
    D-HMCF/%Ti3C2Tx-0MXene-SCF/%Ti3C2Tx-1.0MXene-SCF/%
    Ti—C(MXene) 281.9 3.25
    C—C 284.6 46.00 45.69 38.37
    —HC—CH— 285.5 39.25 37.81 35.10
    C—O 286.4 2.37 4.51 15.34
    C=O 287.3 3.40 11.46 6.84
    —COOH 288.6 3.03
    π*-π 290.8 5.95 0.53 1.08
    下载: 导出CSV
  • [1] BARAL N, DAVIES P, BALEY C, et al. Delamination behaviour of very high modulus carbon/epoxy marine composites[J]. Composites Science and Technology,2008,68(3-4):995-1007. doi: 10.1016/j.compscitech.2007.07.022
    [2] 沈曾民, 迟伟东, 张学军, 等. 高模量碳纤维的现状及发展(1)[J]. 高科技纤维与应用, 2010, 35(3):5-13. doi: 10.3969/j.issn.1007-9815.2010.03.002

    SHEN Zengmin, CHI Weidong, ZHANG Xuejun, et al. The current status and development trend of high modulus carbon fibers (1)[J]. Hi-Tech Fiber & Application,2010,35(3):5-13(in Chinese). doi: 10.3969/j.issn.1007-9815.2010.03.002
    [3] 陶积柏, 黎昱, 张玉生. 高模量碳纤维在中国宇航结构产品上的应用现状及实现自我保障的建议[J]. 材料科学与工艺, 2015, 23(6):98-103. doi: 10.11951/j.issn.1005-0299.20150618

    TAO Jibai, LI Yu, ZHANG Yusheng. Application-status of high modulus carbon fiber in domestic aerospace structural products and suggestions for self-supply[J]. Materials Science and Technology,2015,23(6):98-103(in Chinese). doi: 10.11951/j.issn.1005-0299.20150618
    [4] HAO R T, JIAO X W, ZHANG X J, et al. Fe3O4/graphene modified waterborne polyimide sizing agent for high modulus carbon fiber[J]. Applied Surface Science,2019,485:304-313. doi: 10.1016/j.apsusc.2019.04.184
    [5] LIN J W, XU P, WANG L L, et al. Multi-scale interphase construction of self-assembly naphthalenediimide/multi-wall carbon nanotube and enhanced interfacial properties of high-modulus carbon fiber composites[J]. Composites Science and Technology,2019,184:107855. doi: 10.1016/j.compscitech.2019.107855
    [6] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [7] ZHANG S, LIU W B, HAO L F, et al. Preparation of carbon nanotube/carbon fiber hybrid fiber by combining electrophoretic deposition and sizing process for enhancing interfacial strength in carbon fiber composites[J]. Composites Science and Technology,2013,88:120-125. doi: 10.1016/j.compscitech.2013.08.035
    [8] KIM K J, KIM J, YU W R, et al. Improved tensile strength of carbon fibers undergoing catalytic growth of carbon nanotubes on their surface[J]. Carbon,2013,54:258-267. doi: 10.1016/j.carbon.2012.11.037
    [9] TIWARI S, BIJWE J. Surface treatment of carbon fibers-A review[J]. Procedia Technology,2014,14:505-512. doi: 10.1016/j.protcy.2014.08.064
    [10] LI L, YAN C, XU H, et al. Improving the interfacial properties of carbon fiber-epoxy resin composites with a graphene-modified sizing agent[J]. Journal of Applied Polymer Science,2018,136(9):47122.
    [11] WU G S, MA L C, LIU L, et al. Interface enhancement of carbon fiber reinforced methylphenylsilicone resin composites modified with silanized carbon nanotubes[J]. Materials & Design,2016,89:1343-1349.
    [12] KARAKASSIDES A, GANGULY A, TSIRKA K, et al. Radially grown graphene nanoflakes on carbon fibers as reinforcing interface for polymer composites[J]. ACS Applied Nano Materials,2020,3(3):2402-2413. doi: 10.1021/acsanm.9b02536
    [13] ZHANG X Q, FAN X Y, YAN C, et al. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide[J]. ACS Applied Materials and Interfaces,2012,4(3):1543-1552. doi: 10.1021/am201757v
    [14] LIU L, YAN F, LI M, et al. Improving interfacial properties of hierarchical reinforcement carbon fibers modified by graphene oxide with different bonding types[J]. Composites Part A: Applied Science and Manufacturing,2018,107:616-625. doi: 10.1016/j.compositesa.2018.02.009
    [15] YANG Y, LU C X, SU X L, et al. Effect of nano-SiO2 modified emulsion sizing on the interfacial adhesion of carbon fibers reinforced composites[J]. Materials Letters,2007,61(17):3601-3604. doi: 10.1016/j.matlet.2006.11.121
    [16] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [17] MALESKI K, MOCHALIN V N, GOGOTSI Y. Dispersions of two-dimensional titanium carbide mxene in organic solvents[J]. Chemistry of Materials,2017,29(4):1632-1640. doi: 10.1021/acs.chemmater.6b04830
    [18] TIAN S, CHENG G J, TANG Z F, et al. Fabrication of two-dimensional Ti3C2Tx MXenes by ball milling pretreatment and mild etchant and their microstructure[J]. Ceramics International,2020,46(18):28949-28954. doi: 10.1016/j.ceramint.2020.08.065
    [19] LIU L, YING G B, HU C, et al. Functionalization with MXene (Ti3C2) enhances the wettability and shear strength of carbon fiber-epoxy composites[J]. ACS Applied Nano Materials,2019,2(9):5553-5562. doi: 10.1021/acsanm.9b01127
    [20] YUAN X Y, JIANG J, WEI H W, et al. PAI/MXene sizing-based dual functional coating for carbon fiber/PEEK composite[J]. Composites Science and Technology,2021,201:108496. doi: 10.1016/j.compscitech.2020.108496
    [21] GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J]. Nature,2014,516(7529):78-81. doi: 10.1038/nature13970
    [22] HONG V M, HUANG H, ZHOU K, et al. Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: Synthesis and applications[J]. Journal of Materials Chemistry A,2017,5(7):3039-3068. doi: 10.1039/C6TA06772G
    [23] 全国纤维增强塑料标准化技术委员会. 单向纤维增强塑料层间剪切强度试验方法: GB 3357—1982[S]. 北京: 中国标准出版社, 1982.

    National Technical Committee of Standardization for Fiber Reinfoeced Plastics. Test method for interlaminar shear strength of unidirectional fiber reinforced plastics: GB 3357—1982[S]. Beijing: China Standards Press, 1982(in Chinese).
    [24] HAN M K, YIN X W, WU H, et al. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-Band[J]. ACS Applied Materials & Interfaces,2016,8(32):21011-21019.
    [25] HE L X, WANG J L, WANG B B, et al. Large-scale production of simultaneously exfoliated and functionalized MXenes as promising flame retardant for polyurethane[J]. Composites Part B: Engineering,2019,179:107486. doi: 10.1016/j.compositesb.2019.107486
    [26] UNTERWEGER C, DUCHOSLAV J, STIFTER D, et al. Characterization of carbon fiber surfaces and their impact on the mechanical properties of short carbon fiber reinforced polypropylene composites[J]. Composites Science and Technology,2015,108:41-47. doi: 10.1016/j.compscitech.2015.01.004
    [27] CHI X F, LI M X, LIANG M, et al. Enhanced interfacial interactions of carbon fiber/epoxy resin composites by regulating PEG-E51 and graphene oxide complex sizing at the interface[J]. Polymers for Advanced Technologies,2021,32(9):3458-3473. doi: 10.1002/pat.5357
    [28] DENG C, JIANG J J, LIU F, et al. Influence of graphene oxide coatings on carbon fiber by ultrasonically assisted electrophoretic deposition on its composite interfacial property[J]. Surface and Coatings Technology,2015,272:176-181. doi: 10.1016/j.surfcoat.2015.04.008
    [29] ZHANG T, ZHAO Y Q, LI H F, et al. Effect of polyurethane sizing on carbon fibers surface and interfacial adhesion of fiber/polyamide 6 composites[J]. Journal of Applied Polymer Science,2018,135(16):46111. doi: 10.1002/app.46111
    [30] JIANG D W, LIU L, WU G S, et al. Mechanical properties of carbon fiber composites modified with graphene oxide in the interphase[J]. Polymer Composites,2017,38(11):2425-2432. doi: 10.1002/pc.23828
    [31] MA L C, ZHU Y Y, FENG P F, et al. Reinforcing carbon fiber epoxy composites with triazine derivatives functionalized graphene oxide modified sizing agent[J]. Composites Part B: Engineering,2019,176:107078. doi: 10.1016/j.compositesb.2019.107078
    [32] PENG Q Y, LI Y B, HE X D, et al. Interfacial enhancement of carbon fiber composites by poly(amido amine) functionalization[J]. Composites Science and Technology,2013,74:37-42. doi: 10.1016/j.compscitech.2012.10.005
    [33] LIU P F, YANG Y H. Finite element analysis of the competition between crack deflection and penetration of fiber-reinforced composites using virtual crack closure technique[J]. Applied Composite Materials,2014,21(5):759-771. doi: 10.1007/s10443-013-9375-y
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1190
  • HTML全文浏览量:  396
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-29
  • 修回日期:  2021-08-25
  • 录用日期:  2021-08-31
  • 网络出版日期:  2021-09-22
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回