留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

树脂基复合材料自冲铆工艺影响因素及研究进展

符平坡 曾祥瑞 丁华 张娜娜 罗时清

符平坡, 曾祥瑞, 丁华, 等. 树脂基复合材料自冲铆工艺影响因素及研究进展[J]. 复合材料学报, 2023, 40(4): 1819-1840. doi: 10.13801/j.cnki.fhclxb.20220707.004
引用本文: 符平坡, 曾祥瑞, 丁华, 等. 树脂基复合材料自冲铆工艺影响因素及研究进展[J]. 复合材料学报, 2023, 40(4): 1819-1840. doi: 10.13801/j.cnki.fhclxb.20220707.004
FU Pingpo, ZENG Xiangrui, DING Hua, et al. Influencing factors and research progress of self-piercing riveting process for resin matrix composite[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1819-1840. doi: 10.13801/j.cnki.fhclxb.20220707.004
Citation: FU Pingpo, ZENG Xiangrui, DING Hua, et al. Influencing factors and research progress of self-piercing riveting process for resin matrix composite[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1819-1840. doi: 10.13801/j.cnki.fhclxb.20220707.004

树脂基复合材料自冲铆工艺影响因素及研究进展

doi: 10.13801/j.cnki.fhclxb.20220707.004
详细信息
    通讯作者:

    曾祥瑞,博士,教授,博士生导师,研究方向为汽车智能驾驶技术和汽车轻量化工艺 E-mail: zengxiangrui@126.com

  • 中图分类号: TB332

Influencing factors and research progress of self-piercing riveting process for resin matrix composite

  • 摘要: 复合材料和轻质高强金属相结合的混合材料车身结构使用成为汽车轻量化的重要途径,复合材料之间及其与异质材料间的有效连接则是混合材料车身制造的关键环节。自冲铆工艺以其优质高效的特点,在复合材料连接中展现出优势和良好适用性,得到了广泛的关注和研究。总结近年来复合材料自冲铆连接的研究成果发现:复合材料与铝合金薄板自冲铆接头强度多集中在4 kN上下,强度值范围可以与金属板件间的自冲铆接头相媲美;而影响接头性能的主要因素有母材性能、铆钉结构、铆接工艺参数及服役条件等;改善接头性能的关键在于提升复合材料板的强度、降低复合材料内部铆接损伤缺陷及改善钉脚与下板的机械内锁结合性能;此外,自冲铆接头复合以胶接工艺,能够显著提升接头的综合性能。

     

  • 图  1  自冲铆(SPR)工艺流程示意图[20]

    Figure  1.  Process diagram for self-piercingriveting (SPR)[20]

    图  2  典型自冲铆铆钉(a)及接头结构(b)示意图

    Figure  2.  Typical section structure of the rivet (a) and joint (b) of SPR

    D—Head diameter; L—Leg length; D1—Inner diameter; θ—Blade angle

    图  3  自冲铆接头失效破坏形式[25]

    Figure  3.  Failure modes for SPR joints[25]

    图  4  热固性树脂基碳纤维复合材料(CFRP)连接顺序对接头的影响[30]:(a) CFRP为下板;(b) CFRP为上板

    Figure  4.  Influence of thermosetting carbon fiberreinforced plastics (CFRP) stacking sequence on the joint[30]: (a) CFRP as lower sheet; (b) CFRP as upper sheet

    图  5  尼龙基碳纤维复合材料(PA6-CFRP)为上基板铆接接头[32]

    Figure  5.  SPR joint with Nylon 6 based carbon fiber reinforced plastics (PA6-CFRP) as upper sheet[32]

    图  6  热塑性基体玻璃纤维复合材料(GFRP)连接顺序及接头形态[32]:(a) GFRP作为上基板;(b) GFRP作为下基板

    Figure  6.  Stacking sequence and the joint morphology of thermoplastic glass fiber reinforced plastics (GFRP)[32]: (a) GFRP as upper sheet; (b) GFRP as lower sheet

    图  7  盐雾时效对接头性能的影响[34]

    Figure  7.  Influence of salt-fog ageing on the joint performance [34]

    Pmax—Maximum load after ageing;P0—Maximum load without ageing

    图  8  盐雾时效后CFRP和GFRP接头失效模式[34]

    Figure  8.  Failure modes for the CFRP and GFRP joints after salt-fog ageing [34]

    图  9  交叉铺层和多角度铺层CFRP材料接头载荷-位移曲线[42]

    Figure  9.  Load-displacement curves of SPR joints with CFRP cross-ply and CFRP angle-ply [42]

    图  10  CFRP板厚对失效模式的影响 [30]:(a) 板厚1.0 mm;(b) 板厚1.5 mm;(c) 板厚2.0 mm

    Figure  10.  Influence of the CFRP sheet thickness on failure modes [30]: (a) Thickness of 1.0 mm; (b) Thickness of 1.5 mm; (c) Thickness of 2.0 mm

    图  11  预开孔自冲铆接头(a)与常规自冲铆接头(b)剖面结构尺寸对比[26]

    Figure  11.  Comparison of section structures and dimensions of pre-holed SPR joint (a) and regular SPR joint (b) [26]

    TAl—Pure titanium

    图  12  预开孔自冲铆接头与常规自冲铆接头破坏模式[26]:(a) 预开孔自冲铆上基板挤压破坏;(b) 预开孔自冲铆下基板拉脱破坏;(c) 常规自冲铆上基板挤压破坏;(d) 常规自冲铆下基板拉脱破坏

    Figure  12.  Failure modes of pre-holed SPR joint and regular SPR joint[26]: (a) Bearing of upper sheet in pre-holed SPR joint; (b) Pull-through from lower sheet in pre-holed SPR joint; (c) Bearing of upper sheet in regular SPR joint; (d) Pull-through from lower sheet in regular SPR joint

    图  13  CFRP搭接顺序对接头剖面结构影响[44]:(a) CFRP 为上板;(b) CFRP为下板

    Figure  13.  Influence of stacking sequence of CFRP on the joint section structure[44]: (a) CFRP as upper sheet; (b) CFRP as lower sheet

    图  14  电磁自冲铆(a)与传统压铆(b)接头剖面结构对比[45]

    Z—Head height; Δt1—Bottom thickness; Δt2—Remaining thickness; Δt3—Undercut thickness

    Figure  14.  Comparison of joint section structures between electromagnetic SPR (a) and regular pressure SPR (b) [45]

    图  15  自冲铆速度对接头剖面结构影响[46]

    Figure  15.  Influence of punch velocity on the joint section structure[46]

    图  16  钉头余高对接头处CFRP损伤的影响[47]:(a) 钉头与上基板面平齐;(b) 钉头余高0.03 mm

    Figure  16.  Influence of head height on the damage of CFRP near the joint[47]: (a) Flush rivet head height; (b) Head height for 0.03 mm

    图  17  冲铆压力对接头结构的影响 [44]:(a) 703.3 N;(b) 803.8 N;(c) 904.3 N

    Figure  17.  Impact of rivet pressure on the joint section structure [44]: (a) 703.3 N; (b) 803.8 N; (c) 904.3 N

    图  18  冲铆压力(液压冲铆设备油压)对接头最大拉伸剪切载荷的影响[49]

    Figure  18.  Impact of rivet pressure (Oil pressure of the hydraulic riveting system) on the maximum tensile-shear load of the joint[49]

    图  19  自冲铆温度对接头剖面结构的影响[54]:(a) 常规自冲铆;(b) 温热自冲铆

    Figure  19.  Influence of SPR temperature on the joint section structure[54]: (a) Regular SPR; (b) Warm SPR

    图  20  常规自冲铆(a)与后固化自冲铆(b)工艺接头损伤对比[43]

    Figure  20.  Contrast of the CFRP damage near the joint for regular SPR (a) and post-curing SPR (b)[43]

    图  21  常规自冲铆(a)与后固化自冲铆(b)工艺接头残余CFRP堆积对比[43]

    Figure  21.  Contrast of the residual CFRP for regular SPR (a) and post-curing SPR (b) [43]

    图  22  常规自冲铆(a)与后固化自冲铆(b)工艺接头破坏模式对比[43]

    Figure  22.  Contrast of the failure modes for regular SPR (a) and post-curing SPR (b) [43]

    图  23  双铆钉胶铆复合连接接头结构示意图[55]

    Di—Distance between rivets

    Figure  23.  Schematic diagram of structure for self-piercing riveting bonded joint with double rivets[55]

    图  24  空心铆钉(a)和半空心铆钉(b)结构对比[56]

    Figure  24.  Structure contrast of hollow rivet (a) and semi-hollow rivet (b)[56]

    Φ—Diameter

    图  25  圆顶铆钉(a)和沉头铆钉(b)结构对比[33]

    Figure  25.  Structure contrast of domed head rivet (a) and countersunk head rivet (b) [33]

    图  26  实心铆钉(左)和中空环切铆钉(右)自冲铆接头剖面形貌对比[57]

    Figure  26.  Section structure contrast of SPR joints with full rivet (Left) and reservoir rivet (Right) [57]

    图  27  自冲铆铆钉结构演化[57]

    Figure  27.  Evolution of rivet structure for SPR[57]

    图  28  铆钉结构对接头损伤的影响[57]:(a)中空环切铆钉; (b)容差中空环切铆钉

    Figure  28.  Influence of rivet structure on joint damage[57]: (a) Reservoir rivet; (b) Tolerance reservoir rivet

    图  29  改进自冲铆接头结构[58]:(a) 铆接前接头结构剖面;(b) 铆接后接头结构侧面

    Figure  29.  Joint structure of modified SPR[58]: (a) Section structure before SPR; (b) Side view structure after SPR

    图  30  改进自冲铆和螺栓接头拉伸载荷-位移曲线 [58]

    Figure  30.  Load-displacement curves for modified SPR and bolt joints [58]

    图  31  常规自冲铆(a)与长铆钉刺穿自冲铆(b)接头剖面结构对比[60]

    Figure  31.  Section structure contrast of regular SPR joint and self-piercing-through riveting (SPTR)[60]

    图  32  加速腐蚀试验后接头的铆钉形貌[24]:(a) Almac@镀层铆钉;(b) Zn-Ni镀层铆钉

    Figure  32.  Rivet morphology of joints after accelerated corrosion test[24]: (a) Almac@coated rivet; (b) Zn-Ni coated rivet

    图  33  接头载荷角度示意图[62]

    Figure  33.  Diagram of loading angles on the joint[62]

    A—Pure tensile load; B—Mixed tensile/shear load; C—Pure shear load

    图  34  盐雾时效时间对接头载荷-位移曲线的影响[34]

    Figure  34.  Influence of salt spray fog aging time on load-displacement curves of joint[34]

    图  35  材料热膨胀系数差异引起的接头损伤[66]

    Figure  35.  Joint damage caused by difference of thermal expansion coefficient of materials[66]

    Δl1—Displacement differences of inner area; Δl2—Displacement differences of outer area

    图  36  不同连接工艺接头最大载荷(a)、能力吸收值(b)和刚度(c)对比[42]

    Figure  36.  Contrast of maximum load (a), energy absorption (b) and stiffness (c) for joints with different jointing process[42]

    图  37  胶接接头载荷-位移曲线[42]

    Figure  37.  Load-displacement curves of bonded joint[42]

    图  38  表1中接头强度的统计规律:(a) 接头最大载荷与复合材料板厚;(b) 接头最大载荷与铆钉长度

    Figure  38.  Statistical law of joint strength in Table 1: (a) Maximum load and composite sheet thickness; (b) Maximum load and rivet length

    表  1  复合材料自冲铆连接工艺研究进展

    Table  1.   Research progress of composite SPR process

    YearProcessJoining materialSheets thickness/mmRivet length/mmMaximum load/kNEnergy
    absorption/J
    Failure modeRef.
    2012SPRCFRP-Al1.5-2.76.5About 3.5Pull-through from top sheet, or net tension of the lower sheet[49]
    2012Double rivet SPRCFRP-Al1.5-2.7About 7.8Net tension of top sheet[55]
    2012Modified SPRCFRP-CFRP3.2 (Total)10.8About 8.0Pull-through from top sheet[58]
    2013SPR-bonded hybridCFRP-Al1.5-2.76.5About 5.8About 23Pull-through from top sheet[42]
    2015SPRGFRP-Al3.0-2.06.5About 3.7Bearing of top sheet[32]
    2015SPRGFRP-Al2.0-2.0[33]
    2016SPRGFRP-Al2.0-2.04.58Pull-through from or net tension of top sheet[65]
    2017SPRCFRP-Al2.1-2.010.04.5Bearing[34]
    2017SPRGFRP-Al2.5-2.56.04Net tension of lower sheet[47]
    2019SPRCFRP-Al2.5-2.56.04.5Pull-through from top sheet[45]
    2018SPRCFRP-Al2.0-1.52.618.3Pull-through from lower sheet[30]
    2019SPR-bonded hybridCFRP-Al2.0-2.0About 12About 35Bearing of or pull-through from top sheet + adhesive interface failure[41]
    2019SPRCFRP-Al2.0-2.06.54.2Pull-through from lower sheet[44]
    2019SPRCFRP-Al2.0-2.06.03.4517.1Pull-through from lower sheet[22]
    2020SPTRCFRP-Al2.5-2.59.5About 4.8[60]
    2020SPRGFRP-Al2.0-2.03.7810.2Pull-through from lower sheet[62]
    2020Pre-holed SPRCFRP-Ti2.0-1.55.52.514Pull-through from top sheet[26]
    2020SPR-bonded hybridCFRP-H62 Cu1.5-1.56.04.066.3Pull-through from top sheet + adhesive interface failure[35]
    2020SPRC/GFRP-Al2.7-2.57.03.79Fastener failure[69]
    2021Post-curing SPRCFRP-Al1.28-2.05.52.22Pull-through from lower sheet[43]
    2021SPRCFRP-Al3.0-3.09.0About 4.3Pull-through from top sheet[59]
    2021Warm SPRCFRP-Al1.0-2.05.01.99.7Pull-through from top sheet[54]
    2022SPRCFRP-Al2.5-2.57.04.428.4Pull-through from lower sheet[56]
    Notes: SPTR—Self-piercing-through riveting.
    下载: 导出CSV
  • [1] LI M, LI S, YANG X. The influence of machining processes on strain distribution and progressive failure characteristics when producing holes in CFRP[J]. Composite Structures,2020,238:111994. doi: 10.1016/j.compstruct.2020.111994
    [2] 李熹平, 刘傅文, 王爽, 等. 金-塑微结构注射成型仿真与试验研究[J]. 机械工程学报, 2016, 52(22):61-69. doi: 10.3901/JME.2016.22.061

    LI Xiping, LIU Fuwen, WANG Shuang, et al. Simulation and experiment study of metal-polymer composite injected with microstructure[J]. Journal of Mechanical Engineering,2016,52(22):61-69(in Chinese). doi: 10.3901/JME.2016.22.061
    [3] WANG Y, LI J, DENG J, et al. Bond behaviour of CFRP/steel strap joints exposed to overloading fatigue and wetting/drying cycles[J]. Engineering Structures,2018,172:1-12. doi: 10.1016/j.engstruct.2018.05.112
    [4] HE X, GU F, BALL A. A review of numerical analysis of friction stir welding[J]. Progress in Materials Science,2014,65:1-66. doi: 10.1016/j.pmatsci.2014.03.003
    [5] TEA R, RDSG C, LFM D S, et al. Damage analysis of composite-aluminium adhesively-bonded single-lap joints[J]. Composite Structures,2016,136:25-33. doi: 10.1016/j.compstruct.2015.09.054
    [6] GRANT L, ADAMS R D, LFMD S. Experimental and numerical analysis of single-lap joints for the automotive industry[J]. International Journal of Adhesion & Adhesives,2009,29(4):405-413. doi: 10.1016/j.ijadhadh.2008.09.001
    [7] 金启豪, 陈娟, 彭立明, 等. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1):15-24. doi: 10.11868/j.issn.1001-4381.2021.000524

    JIN Qihao, CHEN Juan, PENG Liming, et al. Research progress in joining of carbon fiber reinforced polymer composites and aluminum/magnesium alloys[J]. Journal of Materials Engineering,2022,50(1):15-24(in Chinese). doi: 10.11868/j.issn.1001-4381.2021.000524
    [8] CHEN Y, LI M, YANG X, et al. Damage and failure characteristics of CFRP/aluminum single lap joints designed for lightweight applications[J]. Thin-Walled Structures,2020,153:106802. doi: 10.1016/j.tws.2020.106802
    [9] SMAG B, JFDS A, AFA B. Friction spot joining of aluminum AA2024/carbon-fiber reinforced poly(phenylene sulfide) composite single lap joints: Microstructure and mechanical performance[J]. Materials & Design,2014,54:196-206. doi: 10.1016/j.matdes.2013.08.034
    [10] 檀财旺, 苏健晖, 冯紫微, 等. 金属与塑料激光连接的研究现状与展望[J]. 机械工程学报, 2020, 56(6):85-94. doi: 10.3901/JME.2020.06.085

    TAN Caiwang, SU Jianhui, FENG Ziwei, et al. Research status and development on laser joining of metal to plastic[J]. Journal of Mechanical Engineering,2020,56(6):85-94(in Chinese). doi: 10.3901/JME.2020.06.085
    [11] 刘煜纯, 赵洪运, 周宝升, 等. 金属/聚合物基于摩擦连接技术研究现状[J]. 航空学报, 2022, 43(4): 193-210.

    LIU Yuchun, ZHAO Hongyun, ZHOU Baosheng, et al. A review on friction-based metal/polymer joining technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 193-210(in Chinese).
    [12] BUDHE S, BANEA M D, DE BARROS S, et al. An updated review of adhesively bonded joints in composite materials[J]. International Journal of Adhesion and Adhesives,2017,72:30-42. doi: 10.1016/j.ijadhadh.2016.10.010
    [13] 罗书舟. 冲击载荷下碳纤维复合材料胶接接头力学性能研究[D]. 长沙: 湖南大学, 2015.

    LUO Shuzhou. Study on mechanical properties of bonded joints of carbon fiber reinforced plastics under impact loading[D]. Changsha: Hunan University, 2015(in Chinese).
    [14] FRANCO G D, ZUCCARELLO B. Analysis and optimization of hybrid double lap aluminum-GFRP joints[J]. Composite Structures,2014,116:682-693. doi: 10.1016/j.compstruct.2014.05.044
    [15] ABE Y, KATO T, MORI K. Self-piercing riveting of high tensile strength steel and aluminium alloy sheets using conventional rivet and die[J]. Journal of Materials Processing Technology,2009,209(8):3914-3922. doi: 10.1016/j.jmatprotec.2008.09.007
    [16] MORI K I, ABE Y. A review on mechanical joining of aluminium and high strength steel sheets by plastic deformation[J]. International Journal of Lightweight Materials and Manufacture,2018,1(1):1-11. doi: 10.1016/j.ijlmm.2018.02.002
    [17] BARNES T A, PASHBY I R. Joining techniques for aluminium spaceframes used in automobiles: Part II—Adhesive bonding and mechanical fasteners[J]. Journal of Materials Processing Technology,2000,99(1-3):72-79. doi: 10.1016/S0924-0136(99)00361-1
    [18] 庄蔚敏, 刘洋, 王鹏跃, 等. 钢铝异质自冲铆接头剥离失效仿真[J]. 吉林大学学报(工学版), 2019, 49(6):1826-1835. doi: 10.13229/j.cnki.jdxbgxb20181075

    ZHUANG Weimin, LIU Yang, WANG Pengyue, et al. Simulation on peeling failure of self-piercing riveted joints insteel and aluminum alloy dissimilar sheets[J]. Journal of Jilin University (Engineering and Technology Edition),2019,49(6):1826-1835(in Chinese). doi: 10.13229/j.cnki.jdxbgxb20181075
    [19] FRATINI L, RUISI V F. Self-piercing riveting for aluminium alloys-composites hybrid joints[J]. The International Journal of Advanced Manufacturing Technology,2009,43(1-2):61-66. doi: 10.1007/s00170-008-1690-3
    [20] PORCARO R, HANSSEN A G, LANGSRTH M, et al. The behaviour of a self-piercing riveted connection under quasi-static loading conditions[J]. International Journal of Solids and Structures,2006,43(17):5110-5131. doi: 10.1016/j.ijsolstr.2005.10.006
    [21] REZWANUL H. Quality of self-piercing riveting (SPR) joints from cross-sectional perspective: A review[J]. Archives of Civil and Mechanical Engineering,2018,18(1):83-93. doi: 10.1016/j.acme.2017.06.003
    [22] JIANG H, GAO S, LI G, et al. Structural design of half hollow rivet for electromagnetic self-piercing riveting process of dissimilar materials[J]. Materials & Design,2019,183:108141. doi: 10.1016/j.matdes.2019.108141
    [23] KANG J, RAO H, ZHANG R, et al. Tensile and fatigue behaviour of self-piercing rivets of CFRP to aluminium for automotive application[J]. IOP Conference Series: Materials Science and Engineering,2016,137:12025-12035. doi: 10.1088/1757-899X/137/1/012025
    [24] KARIMA M A, BAEA J H, KAMB D H, et al. Assessment of rivet coating corrosion effect on strength degradation of CFRP/aluminum self-piercing riveted joints[J]. Surface and Coatings Technology,2020,393:125726. doi: 10.1016/j.surfcoat.2020.125726
    [25] HEIMBS S, SCHMEER S, BLAUROCK J, et al. Static and dynamic failure behaviour of bolted joints in carbon fibre composites[J]. Composites Part A: Applied Science and Manufacturing,2013,47:91-101. doi: 10.1016/j.compositesa.2012.12.003
    [26] ZHANG X, HE X, XING B, et al. Pre-holed self-piercing riveting of carbon fibre reinforced polymer laminates and commercially pure titanium sheets[J]. Journal of Materials Processing Technology,2020,279:116550. doi: 10.1016/j.jmatprotec.2019.116550
    [27] HE X C, PEARSON I, YOUNG K. Self-pierce riveting for sheet materials: State of the art[J]. Journal of Materials Processing Technology,2008,199(1-3):27-36. doi: 10.1016/j.jmatprotec.2007.10.071
    [28] 张雨桐, 刘瑞军. 基于Simufact Forming的半空心铆钉自冲铆接参数对铆接成形的影响研究[J]. 机械研究与应用, 2016, 29(1):4-7.

    ZHANG Yutong, LIU Ruijun. Impact research on self-piercing riveting parameters of half-hollow rivet on riveting forming based on the Simufact Forming simulation[J]. Mechanical Research & Application,2016,29(1):4-7(in Chinese).
    [29] 余康, 邢保英, 何晓聪, 等. 铆接方式对AA5052铝合金自冲铆接头静力学性能的影响[J]. 兵器材料科学与工程, 2018, 41(3):52-55.

    YU Kang, XING Baoying, HE Xiaocong, et al. Effect of riveting methods on static mechanical properties of self-piercing riveted joints in AA5052 aluminum alloy[J]. Ordnance Material Science and Engineering,2018,41(3):52-55(in Chinese).
    [30] 张杰, 何晓聪, 丁文有. 碳纤维板材与轻合金板材自冲铆接头性能研究[J]. 兵器材料科学与工程, 2018, 41(3):48-51.

    ZHAGN Jie, HE Xiaocong, DING Wenyou. Mechanical properties of self-piercing riveted joint of carbon fiber composites and light alloy sheet[J]. Ordnance Material Science and Engineering,2018,41(3):48-51(in Chinese).
    [31] 黄志超, 程露, 胡义华. 铝合金与碳纤维复合材料自冲铆接强度影响因素研究[J]. 塑料工业, 2019, 47(5):72-76, 106. doi: 10.3969/j.issn.1005-5770.2019.05.015

    HUANG Zhichao, CHENG Lu, HU Yihua. Influencing factors of joining strength of self-piercing riveting aluminium alloy and carbon fiber composites[J]. China Plastics Industry,2019,47(5):72-76, 106(in Chinese). doi: 10.3969/j.issn.1005-5770.2019.05.015
    [32] ZHANG J, YANG S. Self-piercing riveting of aluminum alloy and thermoplastic composites[J]. Journal of Composite Materials,2015,49(12):1493-1502. doi: 10.1177/0021998314535456
    [33] GAY A, LEFEBVRE F, BERGAMO S, et al. Fatigue of aluminum/glass fiber reinforced polymer composite assembly joined by self-piercing riveting[J]. Procedia Engineering,2015,133:501-507. doi: 10.1016/j.proeng.2015.12.620
    [34] FIORE V, CALABRESE L, PROVERBIO E, et al. Salt spray fog ageing of hybrid composite/metal rivet joints for automotive applications[J]. Composites Part B: Engineering,2017,108:65-74. doi: 10.1016/j.compositesb.2016.09.096
    [35] 王世鹏, 何晓聪, 魏文杰, 等. 碳纤维复合材料粘铆异质接头力学性能研究[J]. 塑性工程学报, 2020, 27(8):193-198. doi: 10.3969/j.issn.1007-2012.2020.08.026

    WANG Shipeng, HE Xiaocong, WEI Wenjie, et al. Study on mechanical properties of bonded riveted dissimilar joints of carbon fiber composites[J]. Journal of Plasticity Engineering,2020,27(8):193-198(in Chinese). doi: 10.3969/j.issn.1007-2012.2020.08.026
    [36] LIU D, TANG Y J, CONG W L. A review of mechanical drilling for composite laminates[J]. Composite Structures,2012,94(4):1265-1279. doi: 10.1016/j.compstruct.2011.11.024
    [37] MATSUZAKI R, SHIBATA M, TODOROKI A. Improving performance of GFRP/aluminum single lap joints using bolted/co-cured hybrid method[J]. Composites Part A: Applied Science and Manufacturing,2008,39(2):154-163. doi: 10.1016/j.compositesa.2007.11.009
    [38] PENG Z, NIE X. Galvanic corrosion property of contacts between carbon fiber cloth materials and typical metal alloys in an aggressive environment[J]. Surface and Coatings Technology,2013,215:85-89. doi: 10.1016/j.surfcoat.2012.08.098
    [39] 刘洋. 碳纤维增强复合材料与铝合金温热自冲铆连接损伤及接头力学性能研究[D]. 长春: 吉林大学, 2021.

    LIU Yang. Research on damage and mechanical properties of warm self-piercing riveted joints in carbon fiber reinforced composite and aluminum alloy[D]. Changchun: Jilin University, 2021(in Chinese).
    [40] 梁佳炜, 黎雄, 王凤江, 等. 玻璃纤维增强热塑性复合材料自冲铆接过程的数值研究[J]. 江苏科技大学学报(自然科学版), 2018, 32(5):678-683.

    LIANG Jiawei, LI Xiong, WANG Fengjiang, et al. Numerical investigation of self-piercing riveting process of glass fiber reinforced thermoplastics[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition),2018,32(5):678-683(in Chinese).
    [41] LIU Y, ZHUANG W M. Self-piercing riveted-bonded hybrid joining of carbon fibre reinforced polymers and aluminium alloy sheets[J]. Thin-Walled Structures,2019,144:106340. doi: 10.1016/j.tws.2019.106340
    [42] FRANCO G D, FRATINI L, PASTA A. Analysis of the mechanical performance of hybrid (SPR/bonded) single-lap joints between CFRP panels and aluminum blanks[J]. International Journal of Adhesion and Adhesives,2013,41:24-32. doi: 10.1016/j.ijadhadh.2012.10.008
    [43] WANG J, ZHANG G, ZHENG X, et al. A self-piercing riveting method for joining of continuous carbon fiber reinforced composite and aluminum alloy sheets[J]. Composite Structures,2021,259:113219. doi: 10.1016/j.compstruct.2020.113219
    [44] 张凯, 闵峻英, 林建平, 等. CFRP与AA6022-T4铝合金的自冲铆接接头力学性能分析[J]. 锻压技术, 2019, 44(1):150-156.

    ZHANG Kai, MIN Junying, LIN Jianping, et al. Analysis on mechanical properties of self-piercing riveted joints for carbon fiber reinforced polymer and AA6022-T4 aluminum alloy[J]. Forging & Stamping Technology,2019,44(1):150-156(in Chinese).
    [45] LIANG J, JINGA H, ZHANG J, et al. Investigations on mechanical properties and microtopography of electromagnetic self-piercing riveted joints with carbon fiber reinforced plastics/aluminum alloy 5052[J]. Archives of Civil and Mechanical Engineering,2019,19(1):240-250. doi: 10.1016/j.acme.2018.11.001
    [46] 梁钜松. 电磁自冲铆接工艺及剪切力学性能研究[D]. 长沙: 湖南大学, 2019.

    LIANG Jusong. Study on technology and shear mechanical properties of electromagnetic self-piercing riveting[D]. Changsha: Hunan University, 2019(in Chinese).
    [47] RAO H M, KANG J, HUFF G, et al. Impact of rivet head height on the tensile and fatigue properties of lap shear self-pierced riveted CFRP to aluminum[J]. Sae International Journal of Materials & Manufacturing,2017,10(2):167-173. doi: 10.4271/2017-01-0477
    [48] RAO H M, KANG J, HUFF G, et al. Impact of specimen configuration on fatigue properties of self-piercing riveted aluminum to carbon fiber reinforced polymer composite[J]. International Journal of Fatigue,2018,113:11-22. doi: 10.1016/j.ijfatigue.2018.03.031
    [49] FRANCO G D, FRATINI L, PASTA A. Fatigue behaviour of self-piercing riveting of aluminium blanks and carbon fibre composite panels[J]. Proceedings of the Institution of Mechanical Engineers — Part L: Journal of Materials: Design and Applications,2012,226(3):230-241. doi: 10.1177/1464420712443753
    [50] FRANCO G D, FRATINI L, PASTA A, et al. On the self-piercing riveting of aluminium blanks and carbon fibre composite panels[J]. International Journal of Material Forming,2013,6:137-144. doi: 10.1007/s12289-011-1067-2
    [51] MESCHUT G, GUDE M, AUGENTHALER F, et al. Evaluation of damage to carbon-fiber composites induced by self-pierce riveting[J]. Procedia CIRP,2014,18:186-191. doi: 10.1016/j.procir.2014.06.129
    [52] GAY A, ROCHE J, LAPEYRONNIE P, et al. Non-destructive inspection of initial defects of PA6.6-GF50/ aluminum self-piercing griveted joints and damage monitoring under mechanical static loading[J]. International Journal of Damage Mechanics,2017,26(8):1127-1146. doi: 10.1177/1056789516648370
    [53] LIN C, LIN W, LI G X. Clinching process for aluminum alloy and carbon fiber-reinforced thermoplastic sheets[J]. The International Journal of Advanced Manufacturing Technology,2018,97:529-541. doi: 10.1007/s00170-018-1960-7
    [54] 刘洋, 庄蔚敏. 碳纤维增强树脂复合材料和铝合金温热自冲铆接工艺及接头力学性能[J]. 复合材料学报, 2021, 38(11):3563-3577.

    LIU Yang, ZHUANG Weimin. Joining process and mechanical properties of warm self-piercing riveting for carbon fiber reinforced polymer and aluminum alloy[J]. Acta Materiae Compositae Sinica,2021,38(11):3563-3577(in Chinese).
    [55] FRANCO G D, FRATINI L, PASTA A. Influence of the distance between rivets in self-piercing riveting bonded joints made of carbon fiber panels and AA2024 blanks[J]. Materials & Design,2012,35:342-349. doi: 10.1016/j.matdes.2011.09.036
    [56] 黄志超, 李玲玲, 李海洲. 碳纤维复合材料与5052铝合金空心与半空心自冲铆接静强度分析[J]. 塑性工程学报, 2022, 29(2):20-27. doi: 10.3969/j.issn.1007-2012.2022.02.004

    HUANG Zhichao, LI Lingling, LI Haizhou. Static strength analysis of hollow and semi-hollow self-piercing riveting between carbon fiber composite and 5052 aluminum alloy[J]. Journal of Plasticity Engineering,2022,29(2):20-27(in Chinese). doi: 10.3969/j.issn.1007-2012.2022.02.004
    [57] VORDERBRÜGGEN J, MESCHUT G. Investigations on a material-specific joining technology for CFRP hybrid joints along the automotive process chain[J]. Composite Structures,2019,230:111533. doi: 10.1016/j.compstruct.2019.111533
    [58] UEDA M, MIYAKE S, HASEGAWA H, et al. Instantaneous mechanical fastening of quasi-isotropic CFRP laminates by a self-piercing rivet[J]. Composite Structures,2012,94(11):3388-3393. doi: 10.1016/j.compstruct.2012.04.027
    [59] 黄志超, 罗健, 汪伟. 铆钉高度对树脂基复合材料与铝合金自冲铆接接头抗拉强度的影响及失效分析[J]. 锻压技术, 2021, 46(6):77-83. doi: 10.13330/j.issn.1000-3940.2021.06.011

    HUANG Zhichao, LUO Jian, WANG Wei. Influence of rivet height on tensile strength of self-piercing riveted joint between resin matrix composite material and aluminum alloy and failure analysis[J]. Forging & Stamping Technology,2021,46(6):77-83(in Chinese). doi: 10.13330/j.issn.1000-3940.2021.06.011
    [60] RAO Z H, OU L, WANG Y Q, et al. A self-piercing-through riveting method for joining of discontinuous carbon fiber reinforced Nylon 6 composite[J]. Composite Structures,2020,237:111841. doi: 10.1016/j.compstruct.2019.111841
    [61] KOTADIA H R, RAHNAMA A, SOHN I R, et al. Performance of dissimilar metal self-piercing riveting (SPR) joint and coating behaviour under corrosive environment[J]. Journal of Manufacturing Processes,2019,39:259-270. doi: 10.1016/j.jmapro.2019.02.024
    [62] LECONTE N, BOUREL B, LAURO F, et al. Strength and failure of an aluminum/PA66 self-piercing riveted assembly at low and moderate loading rates: Experiments and modeling[J]. International Journal of Impact Engineering,2020,142:103587. doi: 10.1016/j.ijimpeng.2020.103587
    [63] RAY B C. Effects of changing environment and loading speed on mechanical behavior of FRP composites[J]. Journal of Reinforced Plastics & Composites,2006,25(12):1227-1240.
    [64] KOOTSOOKOS A, MOURITZ A P. Seawater durability of glass- and carbon-polymer composites[J]. Composites Science and Technology,2004,64(10-11):1503-1511. doi: 10.1016/j.compscitech.2003.10.019
    [65] GAY A, LEFEBVRE F, BERGAMO S, et al. Fatigue performance of a self-piercing rivet joint between aluminum and glass fiber reinforced thermoplastic composite[J]. International Journal of Fatigue,2016,83:127-134. doi: 10.1016/j.ijfatigue.2015.10.004
    [66] WAGNER J, WILHELM M, BAIER H, et al. Experimental analysis of damage propagation in riveted CFRP-steel structures by thermal loads[J]. International Journal of Advanced Manufacturing Technology,2014,75(5-8):1103-1113. doi: 10.1007/s00170-014-6197-5
    [67] LEI L, HE X, ZHAO D, et al. Clinch-bonded hybrid joining for similar and dissimilar copper alloy, aluminium alloy and galvanised steel sheets[J]. Thin-Walled Structures,2018,131:393-403. doi: 10.1016/j.tws.2018.07.017
    [68] KAISER I, TAN K T. Damage and strength analysis of carbon fiber reinforced polymer and Titanium tubular-lap joint using hybrid adhesive design[J]. International Journal of Adhesion and Adhesives,2020,103:102710. doi: 10.1016/j.ijadhadh.2020.102710
    [69] 黄志超, 程露, 涂林鹏, 等. 不同纤维铺层玻璃-碳纤维混杂复合材料与铝合金自冲铆接强度对比[J]. 塑性工程学报, 2020, 27(10):54-61. doi: 10.3969/j.issn.1007-2012.2020.10.009

    HUANG Zhichao, CHENG Lu, TU Linpeng, et al. Comparison on self-piercing riveting strength of glass-carbon fiber hybrid composites with different fiber layers and aluminum alloy[J]. Journal of Plasticity Engineering,2020,27(10):54-61(in Chinese). doi: 10.3969/j.issn.1007-2012.2020.10.009
    [70] LENNON R, PEDRESCHI R, SINHA B P. Comparative study of some mechanical connections in cold formed steel[J]. Construction and Building Materials,1999,13(3):109-116. doi: 10.1016/S0950-0618(99)00018-5
  • 加载中
图(38) / 表(1)
计量
  • 文章访问数:  1068
  • HTML全文浏览量:  560
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-24
  • 修回日期:  2022-06-20
  • 录用日期:  2022-07-03
  • 网络出版日期:  2022-07-10
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回