留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水热法合成rGO/Mo0.7Co0.3S2高性能超级电容器电极复合材料

马金环 魏智强 梁家浩 卢强 李超 李羚

马金环, 魏智强, 梁家浩, 等. 水热法合成rGO/Mo0.7Co0.3S2高性能超级电容器电极复合材料[J]. 复合材料学报, 2022, 39(10): 1-10 doi: 10.13801/j.cnki.fhclxb.20211028.001
引用本文: 马金环, 魏智强, 梁家浩, 等. 水热法合成rGO/Mo0.7Co0.3S2高性能超级电容器电极复合材料[J]. 复合材料学报, 2022, 39(10): 1-10 doi: 10.13801/j.cnki.fhclxb.20211028.001
Jinhuan MA, Zhiqiang WEI, Jiahao LIANG, Qiang LU, Chao LI, Ling LI. Hydrothermal method of rGO/Mo0.7Co0.3S2 nanocomposites for high-performance supercapacitor electrodes[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 1-10. doi: 10.13801/j.cnki.fhclxb.20211028.001
Citation: Jinhuan MA, Zhiqiang WEI, Jiahao LIANG, Qiang LU, Chao LI, Ling LI. Hydrothermal method of rGO/Mo0.7Co0.3S2 nanocomposites for high-performance supercapacitor electrodes[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 1-10. doi: 10.13801/j.cnki.fhclxb.20211028.001

水热法合成rGO/Mo0.7Co0.3S2高性能超级电容器电极复合材料

doi: 10.13801/j.cnki.fhclxb.20211028.001
基金项目: 国家自然科学基金(51261015);甘肃省自然科学基金(1308RJZA238);兰州理工大学红柳一流学科发展项目
详细信息
    通讯作者:

    魏智强,博士,教授,博士生导师,研究方向纳米材料 E-mail: qianweizuo@163.com

Hydrothermal method of rGO/Mo0.7Co0.3S2 nanocomposites for high-performance supercapacitor electrodes

  • 摘要: 氧化石墨烯以广泛的比表面积(SSA)(2630 m2/g)、高电导率和化学稳定性以及优异的力学、热和光学性能成为超级电容器中的佼佼者,但是氧化石墨烯(rGO)本身导电性较差,因此本文通过rGO与Mo0.7Co0.3S2复合改善其性能,本文采用简单的水热法成功合成了rGO与Mo0.7Co0.3S2不同质量比的纳米复合材料rGO/Mo0.7Co0.3S2。通过X射线衍射 (XRD)、扫描电子显微镜 (SEM)、高分辨透射电子显微镜 (HRTEM)、X射线能谱分析 (EDS)等手段对其物理结构进行表征。以泡沫镍为基底,聚偏氟氯乙烯为粘结剂,N-甲基吡咯烷酮作为辅助剂制作电极,在KOH为电解液的三电极电化学工作站上测试其电化学性能。实验结果表明, rGO/Mo0.7Co0.3S2纳米复合材料为六方结构,结晶良好,形貌主要为纳米花状微球结构,Mo0.7Co0.3S2纳米颗粒表面被一层纱似的rGO包裹着。rGO/Mo0.7Co0.3S2纳米复合材料表现出明显的赝电容行为,特别是rGO/Mo0.7Co0.3S2电极(rGO的含量为30wt%)表现出最大的比电容和最小的扩散阻抗,在电流密度5 A·g−1下循环3000次后rGO/Mo0.7Co0.3S2电极(rGO的含量为30wt%)的比电容值由1377 F·g−1降为1307 F·g−1,库伦效率为95%,这可能是由于Mo0.7Co0.3S2与rGO之间发生的耦合效应。

     

  • 图  1  制备rGO /Mo0.7Co0.3S2样品的流程

    Figure  1.  The process of preparing rGO /Mo0.7Co0.3S2 samples

    图  2  rGO/Mo0.7Co0.3S2样品的XRD图谱

    Figure  2.  XRD patterns of rGO/Mo0.7Co0.3S2 samples

    图  3  30wt%rGO/Mo0.7Co0.3S2样品的SEM图像((a)、(b))、粒径分布图(c)和元素SEM-能谱面扫描图((d)~(g))

    Figure  3.  SEM images ((a), (b)), particle size distribution chart (c) and SEM-Mapping scanning image ((d)-(g)) of 30wt%rGO/Mo0.7Co0.3S2 samples

    图  4  30wt%rGO/Mo0.7Co0.3S2样品的HRTEM图像

    Figure  4.  HRTEM images of 30wt%rGO/Mo0.7Co0.3S2

    图  5  30wt%rGO/Mo0.7Co0.3S2的XEDS图

    Figure  5.  EDS diagram of 30wt%rGO/Mo0.7Co0.3S2

    图  6  0wt%rGO/Mo0.7Co0.3S2 (a)、10wt%rGO/Mo0.7Co0.3S2 (b)、20wt%rGO/Mo0.7Co0.3S2 (c)和30wt%rGO/Mo0.7Co0.3S2 (d)电极的循环伏安(CV)曲线

    Figure  6.  Cyclic voltammetry curves of 0wt%rGO/Mo0.7Co0.3S2 (a), 10wt%rGO/Mo0.7Co0.3S2 (b), 20wt%rGO/Mo0.7Co0.3S2 (c) and 30wt%rGO/Mo0.7Co0.3S2 (d)

    图  7  rGO/Mo0.7Co0.3S2样品的CV曲线对比图(a)和比电容变化曲线(b)

    Figure  7.  CV comparison diagram (a) and specific capacitance change curves (b) of rGO/Mo0.7Co0.3S2 samples

    图  8  rGO/Mo0.7Co0.3S2样品在低频区(a)和高频区(b)的电化学阻抗谱

    Figure  8.  Nyquist spectrum of rGO/Mo0.7Co0.3S2 electrodes in low frequency region (a) and high frequency region (b)

    Rs—; Rct—; CPE—; Wo

    图  9  0wt%rGO/Mo0.7Co0.3S2 (a)、10wt%rGO/Mo0.7Co0.3S2 (b)、20wt%rGO/Mo0.7Co0.3S2 (c)和30wt%rGO/Mo0.7Co0.3S2 (d)电极的恒电流充放电 (GCD)曲线

    Figure  9.  GCD curves of 0wt%rGO/Mo0.7Co0.3S2 (a)、10wt%rGO/Mo0.7Co0.3S2 (b)、20wt%rGO/Mo0.7Co0.3S2 (c) and 30wt%rGO/Mo0.7Co0.3S2 (d)

    图  10  rGO/Mo0.7Co0.3S2样品GCD曲线对比图(a)和电极的倍率曲线图(b)

    Figure  10.  GCD comparison diagram (a) and electrode rate curve (b) of rGO/Mo0.7Co0.3S2 samples

    图  11  rGO/Mo0.7Co0.3S2样品的循环稳定性图

    Figure  11.  Comparison diagram of constant current charge/discharge long cycle test

    表  1  实验试剂

    Table  1.   Experimental reagents

    ReagentMolecular formulaMolecular weight
    Sodium molybdateNa2MoO4·2H2O241.95
    Thiourea(NH2)2CS76.12
    Hydrochloric acidHCl36.5
    Graphite powderC12
    Concentrated sulfuric acidH2SO498
    Potassium permanganateKMnO4158.03
    Cobalt nitrateCo (NO3)2·6H2O291.05
    Ethylene glycol(CH2OH)262.068
    Hydrogen peroxideH2O234.01
    下载: 导出CSV
  • [1] OUYANG T, HUANG S, WANG X T, et al. Nanostructures for electrocatalytic CO2 reduction[J]. Chemistry A European Journal,2020,26(62):14024-14035. doi: 10.1002/chem.202000692
    [2] 许进博, 董晓珠, 孔存辉, 等. SrTiO3/TiO2复合薄膜的制备及其光电化学阴极保护性能[J]. 复合材料学报, 2022, 39(8): 3929-3935.

    XU Jinbo, DONG Xiaozhu, KONG Cunhui, et al. Preparation of SrTiO3/TiO2 composite film and its photoelectrochemical cathodic protection performance [J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3929-3935(in chinese)
    [3] NAZIR M S, ALI Z M, BILAL M, et al. Environmental impacts and risk factors of renewable energy paradigm—A review[J]. Environmental Science and Pollution Research,2020,27(27):33516-33526. doi: 10.1007/s11356-020-09751-8
    [4] LIPPKE B, PUETTMANN M E, JOHNSON L, et al. Carbon emission reduction impacts from alternative biofuels[J]. Forest Products Journal,2012,62(4):296-304. doi: 10.13073/12-00021.1
    [5] HUANG Y, ZHU M S, PEI Z X, et al. Extremely stable polypyrrole achieved via molecular ordering for highly flexible supercapacitors[J]. ACS Applied Materials & Interfaces,2016,8(3):2435-2440.
    [6] CHEN W, XIA C, ALSHAREEF H N. Graphene based integrated tandem supercapacitors fabricated directly on separators[J]. Nano Energy,2015,15:1-8. doi: 10.1016/j.nanoen.2015.03.040
    [7] DONG L B, XU C J, LI Y, et al. Breathable and wearable energy storage based on highly flexible paper electrodes[J]. Advanced Materials,2016,28(42):9313-9319. doi: 10.1002/adma.201602541
    [8] ZHAO C H, ZHOU Y N, GE Z X, et al. Facile construction of MoS2/RCF electrode for high-performance supercapacitor[J]. Carbon,2018,127:699-706. doi: 10.1016/j.carbon.2017.11.052
    [9] UJJAIN S K, AHUJA P, BHATIA R, et al. Printable multi-walled carbon nanotubes thin film for high performance all solid state flexible supercapacitors[J]. Materials Research Bulletin,2016,83:167-171. doi: 10.1016/j.materresbull.2016.06.006
    [10] LI W, MA Y Q, WANG X L, et al. Electric field effects on the electronic structures of MoS2/antimonene van der Waals heterostructure.[J]. Solid State Communications,2019,293:28-32. doi: 10.1016/j.ssc.2019.02.002
    [11] WANG Y P, HUANG S, ZHAO H, et al. First principles study on properties of monolayer MoS2 under different strains[J]. Brazilian Journal of Physics,2021,51(4):1230-1236. doi: 10.1007/s13538-021-00927-2
    [12] 谢杭明, 吴汉卿, 何志伟, 等. MoS2/MXene纳米复合物的研究进展[J]. 复合材料学报, 2022, 39(3): 1005-1016.

    XIE Hangming, WU Hanqing, HE Zhiwei, et al. Research progress of MoS2/MXene nanocomposite [J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1005-1016(in chinese)
    [13] BAFEKRY A, STAMPFL C, AKGENC B, et al. Control of C3N4 and C4N3 carbon nitride nanosheets' electronic and magnetic properties through embedded atoms[J]. Physical Chemistry Chemical Physics,2020,22(4):2249-2261. doi: 10.1039/C9CP06031F
    [14] VU T V, HIEU N V, THAO L T P, et al. Tailoring the structural and electronic properties of an SnSe2/MoS2 van der Waals heterostructure with an electric field and the insertion of a graphene sheet[J]. Physical Chemistry Chemical Physics,2019,21(39):22140-22148. doi: 10.1039/C9CP04689E
    [15] ACERCE M, VOIRY D, CHHOWALLA M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials[J]. Nature Nanotechnology,2015,10(4):313-318. doi: 10.1038/nnano.2015.40
    [16] KRIVOSHEEVA A V, SHAPOSHNIKOV V L, BORISENKO V E, et al. Theoretical study of defect impact on two-dimensional MoS2[J]. Journal of Semiconductors,2015,36(12):1220021-1220026.
    [17] ZHOU Z B, ZHANG Y H, ZHANG X W, et al. Suppressing photoexcited electron-hole recombination in MoSe2/WSe2 lateral heterostructures via interface-coupled state engineering: A time-domainab initiostudy[J]. Journal of Materials Chemistry A,2020,8(39):20621-20628. doi: 10.1039/D0TA06626E
    [18] CHEN T T, WANG R, LI L K, et al. MOF-derived Co9S8/MoS2 embedded in tri-doped carbon hybrids for efficient electrocatalytic hydrogen evolution[J]. Journal of Energy Chemistry,2020,44:90-96. doi: 10.1016/j.jechem.2019.09.018
    [19] HU J Y, LI Y H, ZHANG S S, et al. MoS2 supported on hydrogenated TiO2 heterostructure film as photocathode for photoelectrochemical hydrogen production[J]. International Journal of Hydrogen Energy,2019,44(59):31008-31019. doi: 10.1016/j.ijhydene.2019.09.238
    [20] MISHRA R K, CHOI G J, SOHN Y, et al. A novel rGO/N-rGO supercapacitor architecture for a wide voltage window, high energy density and long-life via voltage holding tests[J]. Chemical Communications,2020,56(19):2893-2896. doi: 10.1039/D0CC00249F
    [21] CHITHAIAH P, RAJU M M, KULKARNI G U, et al. Simple synthesis of nanosheets of rGO and nitrogenated rGO[J]. Beilstein Journal of Nanotechnology,2020,11:68-75. doi: 10.3762/bjnano.11.7
    [22] AHAMED M, AKHTAR M J, KHAN M A M, et al. SnO2-doped ZnO/reduced graphene oxide nanocomposites: Synthesis, characterization, and improved anticancer activity via oxidative stress pathway[J]. International Journal of Nanomedicine,2021,16:89-104. doi: 10.2147/IJN.S285392
    [23] HE G P, BAI Y X, HUANG F, et al. Enhanced electrochemical energy storage of rGO@CoxSy through nanostructural modulation[J]. Journal of Materials Science: Materials in Electronics,2021,32(10):13639-13655. doi: 10.1007/s10854-021-05942-2
    [24] 叶喜葱, 欧阳宾, 杨超, 等. 石墨烯-羰基铁粉线材的制备及其吸波性能分析[J]. 复合材料学报, 2022, 39(7): 3292-3302.

    YE Xicong, OUYANG bin, YANG Chao, et al. Preparation of graphene-carbonyl iron powder wire and analysis of its absorbing properties [J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3292-3302(in Chinese).
    [25] WEI Y, ZHANG X, ZHAO Z L, et al. Controllable synthesis of P-doped MoS2 nanopetals decorated N-doped hollow carbon spheres towards enhanced hydrogen evolution[J]. Electrochimica Acta,2019,297:553-563. doi: 10.1016/j.electacta.2018.12.019
    [26] GUO S N, MIN Y L, FAN J C, et al. Stabilizing and improving solar H-2 generation from Zn0.5Cd0.5S nanorods@MoS2/rGO hybrids via dual charge transfer pathway[J]. ACS Applied Materials & Interfaces,2016,8(5):2928-2934.
    [27] ZHAO Y, ZHANG X, WANG T, et al. Fabrication of rGO/CdS@2H, 1T, amorphous MoS2 heterostructure for enhanced photocatalytic and electrocatalytic activity[J]. International Journal of Hydrogen Energy,2020,45(41):21409-21421. doi: 10.1016/j.ijhydene.2020.05.217
    [28] CHE Z Z, LI Y F, CHEN K X, et al. Hierarchical MoS2@rGO nanosheets for high performance sodium storage[J]. Journal of Power Sources,2016,331:50-57. doi: 10.1016/j.jpowsour.2016.08.139
    [29] JIA Y L, WANG Z H, WANG L Y, et al. Awakening solar hydrogen evolution of MoS2 in alkalescent electrolyte through doping with Co[J]. ChemSusChem,2019,12(14):3336-3342. doi: 10.1002/cssc.201900936
    [30] CHEN Z Y, YAN H X, LIU T Y, et al. Improved mechanical and tribological properties of bismaleimide composites by surface-functionalized reduced graphene oxide and MoS2 coated with cyclotriphosphazene polymer[J]. RSC Advances,2015,5(118):97883-97890. doi: 10.1039/C5RA19101G
    [31] EL-SHAHAT M, MOKHTAR M, RASHAD M M, et al. Electrical studies on a single, binary, and ternary nanocomposites of Mn3O4@TiO2@rGO[J]. Journal of Materials Science: Materials in Electronics,2021,32(8):10224-10239. doi: 10.1007/s10854-021-05678-z
    [32] KUMAR R. NiCo2O4 nano-/microstructures as high-performance biosensors: A review[J]. Nano-Micro Letters,2020,12(9):262-313.
    [33] CHENG H, SHAPTER J G, LI Y Y, et al. Recent progress of advanced anode materials of lithium-ion batteries[J]. Journal of Energy Chemistry,2021,57(6):451-468.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  56
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-20
  • 录用日期:  2021-10-13
  • 修回日期:  2021-10-08
  • 网络出版日期:  2021-10-28
  • 刊出日期:  2022-10-15

目录

    /

    返回文章
    返回