留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水热法合成rGO/Mo0.7Co0.3S2超级电容器电极复合材料

马金环 魏智强 梁家浩 卢强 李超 李羚

马金环, 魏智强, 梁家浩, 等. 水热法合成rGO/Mo0.7Co0.3S2超级电容器电极复合材料[J]. 复合材料学报, 2022, 39(10): 4580-4589. doi: 10.13801/j.cnki.fhclxb.20211028.001
引用本文: 马金环, 魏智强, 梁家浩, 等. 水热法合成rGO/Mo0.7Co0.3S2超级电容器电极复合材料[J]. 复合材料学报, 2022, 39(10): 4580-4589. doi: 10.13801/j.cnki.fhclxb.20211028.001
MA Jinhuan, WEI Zhiqiang, LIANG Jiahao, et al. Hydrothermal method of rGO/Mo0.7Co0.3S2 nanocomposites for high-performance supercapacitor electrodes[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4580-4589. doi: 10.13801/j.cnki.fhclxb.20211028.001
Citation: MA Jinhuan, WEI Zhiqiang, LIANG Jiahao, et al. Hydrothermal method of rGO/Mo0.7Co0.3S2 nanocomposites for high-performance supercapacitor electrodes[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4580-4589. doi: 10.13801/j.cnki.fhclxb.20211028.001

水热法合成rGO/Mo0.7Co0.3S2超级电容器电极复合材料

doi: 10.13801/j.cnki.fhclxb.20211028.001
基金项目: 国家自然科学基金(51261015);甘肃省自然科学基金(1308RJZA238);兰州理工大学红柳一流学科发展项目
详细信息
    通讯作者:

    魏智强,博士,教授,博士生导师,研究方向纳米材料 E-mail: qianweizuo@163.com

  • 中图分类号: TM53;TB332

Hydrothermal method of rGO/Mo0.7Co0.3S2 nanocomposites for high-performance supercapacitor electrodes

  • 摘要: 氧化石墨烯(rGO)以广泛的比表面积(SSA)(2630 m2/g)、高电导率和化学稳定性及优异的力学、热和光学性能成为超级电容器中的佼佼者,但是氧化石墨烯本身导电性较差,因此本文通过rGO与Mo0.7Co0.3S2复合改善其性能,采用简单的水热法成功合成了rGO与Mo0.7Co0.3S2不同质量比的纳米复合材料rGO/Mo0.7Co0.3S2。通过XRD、SEM、HRTEM、EDS等手段对其物理结构进行表征。以泡沫镍为基底,聚偏氟氯乙烯为粘结剂,N-甲基吡咯烷酮作为辅助剂制作电极,在KOH为电解液的三电极电化学工作站上测试其电化学性能。实验结果表明, rGO/Mo0.7Co0.3S2纳米复合材料为六方结构,结晶良好,形貌主要为纳米花状微球结构,Mo0.7Co0.3S2纳米颗粒表面被一层纱似的rGO包裹着。rGO/Mo0.7Co0.3S2纳米复合材料表现出明显的赝电容行为,特别是rGO/Mo0.7Co0.3S2电极(rGO的含量为30wt%)表现出最大的比电容和最小的扩散阻抗,在电流密度5 A·g−1下循环3000次后rGO/Mo0.7Co0.3S2电极(rGO的含量为30wt%)的比电容值由1377.00 F·g−1降为1307.87 F·g−1,库伦效率为95%,这可能是由于Mo0.7Co0.3S2与rGO之间发生的耦合效应。

     

  • 图  1  制备rGO /Mo0.7Co0.3S2样品的流程

    Figure  1.  Process of preparing rGO /Mo0.7Co0.3S2 samples

    图  2  rGO/Mo0.7Co0.3S2样品的XRD图谱

    Figure  2.  XRD patterns of rGO/Mo0.7Co0.3S2 samples

    图  3  30wt%rGO/Mo0.7Co0.3S2样品的SEM图像 ((a), (b))、粒径分布图 (c) 和元素SEM-能谱面扫描图像 ((d)~(g))

    Figure  3.  SEM images ((a), (b)), particle size distribution chart (c) and SEM-mapping scanning images ((d)-(g)) of 30wt%rGO/Mo0.7Co0.3S2 samples

    图  4  30wt%rGO/Mo0.7Co0.3S2样品的HRTEM图像

    Figure  4.  HRTEM images of 30wt%rGO/Mo0.7Co0.3S2

    图  5  30wt%rGO/Mo0.7Co0.3S2的EDS图谱

    Figure  5.  EDS diagram of 30wt%rGO/Mo0.7Co0.3S2

    图  6  0wt%rGO/Mo0.7Co0.3S2 (a)、10wt%rGO/Mo0.7Co0.3S2 (b)、20wt%rGO/Mo0.7Co0.3S2 (c) 和30wt%rGO/Mo0.7Co0.3S2 (d) 电极的循环伏安(CV)曲线

    Figure  6.  Cyclic voltammetry (CV) curves of 0wt%rGO/Mo0.7Co0.3S2 (a), 10wt%rGO/Mo0.7Co0.3S2 (b), 20wt%rGO/Mo0.7Co0.3S2 (c) and 30wt%rGO/Mo0.7Co0.3S2 (d)

    图  7  rGO/Mo0.7Co0.3S2样品的CV曲线对比图 (a) 和比电容变化曲线 (b)

    Figure  7.  CV comparison diagram (a) and specific capacitance change curves (b) of rGO/Mo0.7Co0.3S2 samples

    图  8  rGO/Mo0.7Co0.3S2样品在低频区 (a) 和高频区 (b) 的电化学阻抗谱

    Figure  8.  Nyquist spectrum of rGO/Mo0.7Co0.3S2 electrodes in low frequency region (a) and high frequency region (b)

    Rs—Solution resistance; Rct—Charge transfer resistance;CPE—Constant phase element; Wo—Weber impedance

    图  9  0wt%rGO/Mo0.7Co0.3S2 (a)、10wt%rGO/Mo0.7Co0.3S2 (b)、20wt%rGO/Mo0.7Co0.3S2 (c)和30wt%rGO/Mo0.7Co0.3S2 (d)电极的恒电流充放电 (GCD)曲线

    Figure  9.  Galvanostatic charge discharge curves of 0wt%rGO/Mo0.7Co0.3S2 (a)、10wt%rGO/Mo0.7Co0.3S2 (b)、20wt%rGO/Mo0.7Co0.3S2 (c) and 30wt%rGO/Mo0.7Co0.3S2 (d)

    图  10  rGO/Mo0.7Co0.3S2样品GCD曲线对比图 (a) 和电极的倍率曲线图 (b)

    Figure  10.  GCD comparison diagram (a) and electrode rate curves (b) of rGO/Mo0.7Co0.3S2 samples

    图  11  rGO/Mo0.7Co0.3S2样品的循环稳定性图

    Figure  11.  Comparison diagram of constant current charge/discharge long cycle test

    表  1  实验试剂

    Table  1.   Experimental reagents

    ReagentMolecular formulaMolecular weightManufacturer
    Sodium molybdateNa2MoO4·2H2O241.95Sinopharm Chemical Reagent CO., LTD.
    Thiourea(NH2)2CS76.12Shanghai Aladdin Biochemical Technology CO., LTD.
    Hydrochloric acidHCl36.5Shanghai Aladdin Biochemical Technology CO., LTD.
    Graphite powderC12Sinopharm Chemical Reagent CO., LTD.
    Concentrated sulfuric acidH2SO498Shanghai Aladdin Biochemical Technology CO., LTD.
    Potassium permanganateKMnO4158.03Sinopharm Chemical Reagent CO., LTD.
    Cobalt nitrateCo (NO3)2·6H2O291.05Shanghai Aladdin Biochemical Technology CO., LTD.
    Ethylene glycol(CH2OH)262.068Shanghai Aladdin Biochemical Technology CO., LTD.
    Hydrogen peroxideH2O234.01Shanghai Aladdin Biochemical Technology CO., LTD.
    下载: 导出CSV
  • [1] OUYANG T, HUANG S, WANG X T, et al. Nanostructures for electrocatalytic CO2 reduction[J]. Chemistry A European Journal,2020,26(62):14024-14035. doi: 10.1002/chem.202000692
    [2] 许进博, 董晓珠, 孔存辉, 等. SrTiO3/TiO2复合薄膜的制备及其光电化学阴极保护性能[J]. 复合材料学报, 2022, 39(8): 3929-3935.

    XU Jinbo, DONG Xiaozhu, KONG Cunhui, et al. Preparation of SrTiO3/TiO2 composite film and its photoelectrochemical cathodic protection performance [J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3929-3935(in Chinese).
    [3] NAZIR M S, ALI Z M, BILAL M, et al. Environmental impacts and risk factors of renewable energy paradigm—A review[J]. Environmental Science and Pollution Research,2020,27(27):33516-33526. doi: 10.1007/s11356-020-09751-8
    [4] LIPPKE B, PUETTMANN M E, JOHNSON L, et al. Carbon emission reduction impacts from alternative biofuels[J]. Forest Products Journal,2012,62(4):296-304. doi: 10.13073/12-00021.1
    [5] HUANG Y, ZHU M S, PEI Z X, et al. Extremely stable polypyrrole achieved via molecular ordering for highly flexible supercapacitors[J]. ACS Applied Materials & Interfaces,2016,8(3):2435-2440.
    [6] CHEN W, XIA C, ALSHAREEF H N. Graphene based integrated tandem supercapacitors fabricated directly on separators[J]. Nano Energy,2015,15:1-8. doi: 10.1016/j.nanoen.2015.03.040
    [7] DONG L B, XU C J, LI Y, et al. Breathable and wearable energy storage based on highly flexible paper electrodes[J]. Advanced Materials,2016,28(42):9313-9319. doi: 10.1002/adma.201602541
    [8] ZHAO C H, ZHOU Y N, GE Z X, et al. Facile construction of MoS2/RCF electrode for high-performance supercapacitor[J]. Carbon,2018,127:699-706. doi: 10.1016/j.carbon.2017.11.052
    [9] UJJAIN S K, AHUJA P, BHATIA R, et al. Printable multi-walled carbon nanotubes thin film for high performance all solid state flexible supercapacitors[J]. Materials Research Bulletin,2016,83:167-171. doi: 10.1016/j.materresbull.2016.06.006
    [10] LI W, MA Y Q, WANG X L, et al. Electric field effects on the electronic structures of MoS2/antimonene van der Waals heterostructure.[J]. Solid State Communications,2019,293:28-32. doi: 10.1016/j.ssc.2019.02.002
    [11] WANG Y P, HUANG S, ZHAO H, et al. First principles study on properties of monolayer MoS2 under different strains[J]. Brazilian Journal of Physics,2021,51(4):1230-1236. doi: 10.1007/s13538-021-00927-2
    [12] 谢杭明, 吴汉卿, 何志伟, 等. MoS2/MXene纳米复合物的研究进展[J]. 复合材料学报, 2022, 39(3): 1005-1016.

    XIE Hangming, WU Hanqing, HE Zhiwei, et al. Research progress of MoS2/MXene nanocomposite [J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1005-1016(in Chinese).
    [13] BAFEKRY A, STAMPFL C, AKGENC B, et al. Control of C3N4 and C4N3 carbon nitride nanosheets' electronic and magnetic properties through embedded atoms[J]. Physical Chemistry Chemical Physics,2020,22(4):2249-2261. doi: 10.1039/C9CP06031F
    [14] VU T V, HIEU N V, THAO L T P, et al. Tailoring the structural and electronic properties of an SnSe2/MoS2 van der Waals heterostructure with an electric field and the insertion of a graphene sheet[J]. Physical Chemistry Chemical Physics,2019,21(39):22140-22148. doi: 10.1039/C9CP04689E
    [15] ACERCE M, VOIRY D, CHHOWALLA M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials[J]. Nature Nanotechnology,2015,10(4):313-318. doi: 10.1038/nnano.2015.40
    [16] KRIVOSHEEVA A V, SHAPOSHNIKOV V L, BORISENKO V E, et al. Theoretical study of defect impact on two-dimensional MoS2[J]. Journal of Semiconductors,2015,36(12):1220021-1220026.
    [17] ZHOU Z B, ZHANG Y H, ZHANG X W, et al. Suppressing photoexcited electron-hole recombination in MoSe2/WSe2 lateral heterostructures via interface-coupled state engineering: A time-domainab initiostudy[J]. Journal of Materials Chemistry A,2020,8(39):20621-20628. doi: 10.1039/D0TA06626E
    [18] CHEN T T, WANG R, LI L K, et al. MOF-derived Co9S8/MoS2 embedded in tri-doped carbon hybrids for efficient electrocatalytic hydrogen evolution[J]. Journal of Energy Chemistry,2020,44:90-96. doi: 10.1016/j.jechem.2019.09.018
    [19] HU J Y, LI Y H, ZHANG S S, et al. MoS2 supported on hydrogenated TiO2 heterostructure film as photocathode for photoelectrochemical hydrogen production[J]. International Journal of Hydrogen Energy,2019,44(59):31008-31019. doi: 10.1016/j.ijhydene.2019.09.238
    [20] MISHRA R K, CHOI G J, SOHN Y, et al. A novel rGO/N-rGO supercapacitor architecture for a wide voltage window, high energy density and long-life via voltage holding tests[J]. Chemical Communications,2020,56(19):2893-2896. doi: 10.1039/D0CC00249F
    [21] CHITHAIAH P, RAJU M M, KULKARNI G U, et al. Simple synthesis of nanosheets of rGO and nitrogenated rGO[J]. Beilstein Journal of Nanotechnology,2020,11:68-75. doi: 10.3762/bjnano.11.7
    [22] AHAMED M, AKHTAR M J, KHAN M A M, et al. SnO2-doped ZnO/reduced graphene oxide nanocomposites: Synthesis, characterization, and improved anticancer activity via oxidative stress pathway[J]. International Journal of Nanomedicine,2021,16:89-104. doi: 10.2147/IJN.S285392
    [23] HE G P, BAI Y X, HUANG F, et al. Enhanced electrochemical energy storage of rGO@CoxSy through nanostructural modulation[J]. Journal of Materials Science: Materials in Electronics,2021,32(10):13639-13655. doi: 10.1007/s10854-021-05942-2
    [24] 叶喜葱, 欧阳宾, 杨超, 等. 石墨烯-羰基铁粉线材的制备及其吸波性能分析[J]. 复合材料学报, 2022, 39(7): 3292-3302.

    YE Xicong, OUYANG bin, YANG Chao, et al. Preparation of graphene-carbonyl iron powder wire and analysis of its absorbing properties [J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3292-3302(in Chinese).
    [25] WEI Y, ZHANG X, ZHAO Z L, et al. Controllable synthesis of P-doped MoS2 nanopetals decorated N-doped hollow carbon spheres towards enhanced hydrogen evolution[J]. Electrochimica Acta,2019,297:553-563. doi: 10.1016/j.electacta.2018.12.019
    [26] GUO S N, MIN Y L, FAN J C, et al. Stabilizing and improving solar H-2 generation from Zn0.5Cd0.5S nanorods@MoS2/rGO hybrids via dual charge transfer pathway[J]. ACS Applied Materials & Interfaces,2016,8(5):2928-2934.
    [27] ZHAO Y, ZHANG X, WANG T, et al. Fabrication of rGO/CdS@2H, 1T, amorphous MoS2 heterostructure for enhanced photocatalytic and electrocatalytic activity[J]. International Journal of Hydrogen Energy,2020,45(41):21409-21421. doi: 10.1016/j.ijhydene.2020.05.217
    [28] CHE Z Z, LI Y F, CHEN K X, et al. Hierarchical MoS2@rGO nanosheets for high performance sodium storage[J]. Journal of Power Sources,2016,331:50-57. doi: 10.1016/j.jpowsour.2016.08.139
    [29] JIA Y L, WANG Z H, WANG L Y, et al. Awakening solar hydrogen evolution of MoS2 in alkalescent electrolyte through doping with Co[J]. ChemSusChem,2019,12(14):3336-3342. doi: 10.1002/cssc.201900936
    [30] CHEN Z Y, YAN H X, LIU T Y, et al. Improved mechanical and tribological properties of bismaleimide composites by surface-functionalized reduced graphene oxide and MoS2 coated with cyclotriphosphazene polymer[J]. RSC Advances,2015,5(118):97883-97890. doi: 10.1039/C5RA19101G
    [31] EL-SHAHAT M, MOKHTAR M, RASHAD M M, et al. Electrical studies on a single, binary, and ternary nanocomposites of Mn3O4@TiO2@rGO[J]. Journal of Materials Science: Materials in Electronics,2021,32(8):10224-10239. doi: 10.1007/s10854-021-05678-z
    [32] KUMAR R. NiCo2O4 nano-/microstructures as high-performance biosensors: A review[J]. Nano-Micro Letters,2020,12(9):262-313.
    [33] CHENG H, SHAPTER J G, LI Y Y, et al. Recent progress of advanced anode materials of lithium-ion batteries[J]. Journal of Energy Chemistry,2021,57(6):451-468.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  903
  • HTML全文浏览量:  398
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-20
  • 修回日期:  2021-10-08
  • 录用日期:  2021-10-13
  • 网络出版日期:  2021-10-28
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回