留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属螯合三维交联结构中空纤维膜的制备及其自清洁性能

韩旭 陶云 赵磊 韩昕燃 赵宝宝 王鹏 凤权

韩旭, 陶云, 赵磊, 等. 金属螯合三维交联结构中空纤维膜的制备及其自清洁性能[J]. 复合材料学报, 2023, 41(0): 1-9
引用本文: 韩旭, 陶云, 赵磊, 等. 金属螯合三维交联结构中空纤维膜的制备及其自清洁性能[J]. 复合材料学报, 2023, 41(0): 1-9
Xu HAN, Yun TAO, Lei ZHAO, Xinran HAN, Baobao ZHAO, Peng WANG, Quan FENG. Metal coordinated PAN hollow fiber membranes with triaxial cross-linked structure and its self-cleaning performance[J]. Acta Materiae Compositae Sinica.
Citation: Xu HAN, Yun TAO, Lei ZHAO, Xinran HAN, Baobao ZHAO, Peng WANG, Quan FENG. Metal coordinated PAN hollow fiber membranes with triaxial cross-linked structure and its self-cleaning performance[J]. Acta Materiae Compositae Sinica.

金属螯合三维交联结构中空纤维膜的制备及其自清洁性能

基金项目: 安徽省重点研究与开发计划项目(2022a05020069),安徽省高校重点实验室2021年度联合开放基金项目(2021AETKL07),安徽工程大学科研启动基金资助项目(2020YQQ013),安徽工程大学校级科研项目(Xjky03201901),安徽省自然科学基金面上项目(2008085ME139),安徽省自然科学基金资助项目(2208085QE139),安徽省科研编制计划项目(2022AH050990).
详细信息
    通讯作者:

    韩旭,男,博士研究生,讲师,研究方向为纤维基水净化材料, E-mail: hanxu@ahpu.edu.cn

    凤权,男,博士研究生,教授,研究方向为膜分离材料及其功能性整理, E-mail: fengquan@ahpu.edu.cn

  • 中图分类号: TQ340.6;X703

Metal coordinated PAN hollow fiber membranes with triaxial cross-linked structure and its self-cleaning performance

Funds: Key Research and Development Program of Anhui Province (2022a05020069), 2021Joint Open Fund Project of Anhui University Key Laboratory (2021AETKL07), Research Start-up Fund of Anhui Institute of Technology (2020YQQ013), Anhui Engineering University Scientific Research Project (Xjky03201901), Anhui Provincial Natural Science Foundation Project (2008085ME139), Anhui Provincial Natural Science Foundation Project (2208085QE139), Anhui Provincial Scientific Research Planning Project (2022AH050990).
  • 摘要:   目的  中空纤维膜经过多次膜分离过程后容易堵塞,从而影响其使用寿命,而自清洁功能改性是改善其重复使用性能的方式之一。光、电催化剂可有效恢复膜通量等指标,但对光、电等能源依赖性大,负载工艺复杂。本文拟通过制备一种金属螯合三维交联结构的聚丙烯腈基中空纤维膜,借助于Fe与HO间的芬顿反应(Fenton)达到温和自清洁膜材料的目的。此外,立足于金属螯合物形成的交联网络,达到提高中空纤维膜物理截留效率的目的。  方法  以聚丙烯腈为溶质,N,N-二甲基甲酰胺为溶剂配制铸膜液,采用湿法纺丝技术制备聚丙烯腈中空纤维膜(PAN-HFM)。在不同反应条件下对其进行偕胺肟改性,以探讨肟化程度与改性条件间的关系。将肟化聚丙烯腈中空纤维膜(AOPAN-HFM)与金属Fe离子进行配位制备金属螯合三维交联结构中空纤维膜(FePAN-HFM)。红外光谱、X射线衍射光谱、电子显微镜、静态接触角分析仪等技术被用于对比分析PAN-HFM、AOPAN-HFM、FePAN-HFM的分子结构、表面形貌、亲疏水性能;通量、截留率等性能测试用于分析膜材料自清洁性能。  结果  从PAN-HFM的偕胺肟化改性实验可以看出,中空纤维膜氰基转化率和增重率会随着反应时间、反应温度、盐酸羟胺浓度的增加而增加;红外光谱和X射线衍射光谱结果显示,AOPAN-HFM在3650-3000,1650,913 cm等波数处出现归属于偕胺肟基团的特征峰,其中913 cm附近归属于N—O键的特征吸收在FePAN-HFM中发生偏移,证实了配位键的形成,而PAN-HFM在改性和配位反应后特征衍射峰发生宽化现象,说明其蕴晶结构受偕胺肟支链影响向非晶结构转化;SEM形貌分析显示,PAN-HFM结晶结构的坍塌促进了孔道形成;静态接触角测试结果表明,FePAN-HFM疏水性优于PAN-HFM,该结果有利于膜表面的自清洁。文章对比测试了PAN-HFM、AOPAN-HFM、FePAN-HFM通量、截留率等指标,发现Fe离子与HO组成的Fenton催化体系赋予了FePAN-HFM中空纤维膜较好的自清洁性能,膜通量恢复率达84.6%,明显高于其他样品。为进一步探讨Fenton反应对FePAN-HFM中空纤维膜自清洁性能的影响,将不同Fe离子负载量FePAN-HFM用于亚甲基蓝降解测试,结果显示Fe离子负载量为3.6 mg/g时催化降解活性最高,该结果通过假一级反应动力学计算得到证实。  结论  自清洁功能改性是改善中空纤维膜材料重复使用性能的重要方式之一,常见的光、电催化法因过于依赖外部条件而受到使用限制,而基于Fe离子与HO间的芬顿反应具有反应速率快,对光、电等条件依赖度低等优点。本文主要通过构建基于偕胺肟聚丙烯腈基中空纤维膜的金属螯合交联结构,来实现中空纤维膜自清洁性能改性的目的。本文报道的偕胺肟基金属螯合中空纤维膜,不仅通过引入Fenton反应体系而获得较好的自清洁性能,而且因其三维交联分子结构实现了截留效率的提升。当FePAN-HFM中Fe(III)负载量为3.6 mg/g时自清洁性能最佳。

     

  • 图  1  反应条件对AOPAN中空纤维膜改性情况的影响

    Figure  1.  Effect of modification conditions on AOPAN-HFMs’ anmidoximation

    图  2  聚丙烯腈(PAN)中空纤维膜在肟化改性和配位反应前后的FTIR(a)、XRD(b)图谱

    Figure  2.  FTIR(a) and XRD(b) spectra for Polyacrylonitrile (PAN)-HFM, AOPAN-HFM and FePAN-HFM

    图  3  聚丙烯腈基铁配合物中空纤维膜(FePAN-HFM)(a, b)、AOPAN-HFM(c,d)和FePAN-HFM(e,f)的SEM及EDS能谱(g)分析

    Figure  3.  SEM analysis for Polyacrylonitrile-based iron complex Hollow fiber membrane (FePAN-HFM) (a,b), AOPAN-HFM(c,d), FePAN-HFM(e,f) and EDS for FePAN-HFM(g)

    图  4  PAN-HFM、AOPAN-HFM、FePAN-HFM静态接触角测试

    Figure  4.  Static contact angle test for PAN-HFM, AOPAN-HFM and FePAN-HFM

    图  5  FePAN-HFM自清洁性能在膜分离过程中的表现:中空纤维膜样品在纯水、牛血清白蛋白中的通量变化(a, b)及其截留率(c)

    Figure  5.  Self-cleaning performance of FePAN-HFM in membrane separation process: membrane flux variation in pure water, bovine serum albumin (a, b) and its retention ratio (c)

    图  6  Fe离子负载量对FePAN-HFM自清洁性能的影响(a)及其动力学分析(b)

    Figure  6.  Effect of different Fe ions loading desage on FePAN-HFM self-cleaning performance (a) and its kinetic study (b)

    图  7  FePAN-HFM中空纤维膜在水净化过程中的作用原理

    Figure  7.  Mechanism of the self-cleaning performance for FePAN-HFM during the water purification process

  • [1] HE Y, SHI J, YANG Q, et al. Co-doped 3 D petal-like ZnIn2S4/GaN heterostructures for efficient removal of chlortetracycline residue from real pharmaceutical wastewater[J]. Chemical Engineering Journal,2022,446:1373554.
    [2] NASAR A, MASHKOOR F. Application of polyaniline-based adsorbents for dye removal from water and wastewater review[J]. Environmental Science and Pollution Research,2019,26(6):5333-5356. doi: 10.1007/s11356-018-3990-y
    [3] LIM Y J, GOH K, WANG R. The coming of age of water channels for separation membranes: from biological to biomimetic to synthetic[J]. Chemical Society Reviews,2022,51(11):4537-4582. doi: 10.1039/D1CS01061A
    [4] LIN H, WU J, ZHOU F, et al. Graphitic carbon nitride-based photocatalysts in the applications of environmental catalysis[J]. Journal of Environmental Sciences,2023,124:570-590. doi: 10.1016/j.jes.2021.11.017
    [5] MANGLA D, ANNU, SHARMA A, et al. Critical review on adsorptive removal of antibiotics: Present situation, challenges and future perspective[J]. Journal of Hazardous Materials,2022,425:127946. doi: 10.1016/j.jhazmat.2021.127946
    [6] 容凡丁. 膜分离技术在生物化工中的应用[J]. 化工管理, 2022(3):73-75.

    RONG F D. Application of membrane separation technology in biochemical industry[J]. Chemical management,2022(3):73-75(in Chinese).
    [7] 穆思图, 樊慧菊, 韩秉均, 等. 中空纤维膜的膜污染过程及数学模型研究进展[J]. 膜科学与技术, 2018, 38(1):114-121.

    MU S T, FAN H J, HAN B J, et al. Review of membrane fouling stages and mathematical models for hollow fiber membrane[J]. Membrane Science and Technology,2018,38(1):114-121(in Chinese).
    [8] 武利顺. 酚酞型聚醚砜对聚偏氟乙烯中空纤维膜结构及性能的影响[J]. 精细化工, 2013, 30(6):661-664.

    WU L S. Effect of PES-C on the structure and property of PVDF hollow fiber membrane[J]. Fine chemicals,2013,30(6):661-664(in Chinese).
    [9] ZHANG L, SHI X X, SUN M, et al. Precisely engineered photoreactive titanium nanoarray coating to mitigate biofouling in ultrafiltration[J]. ACS Applied Materials & Interfaces,2021,13(8):9975-9984.
    [10] 杨洋. 自清洁超滤膜构建、结构调控及分离特性研究[D]. 广州: 广州大学, 2022.

    YANG Y. Construction, structural control and separation characteristics of self-cleaning membranes [D]. Guangzhou: Guangzhou University, 2022. (in Chinese)
    [11] WANG X X, SUN M, WANG C, et al. In situ electrochemical generation of reactive chlorine species for efficient ultrafiltration membrane self-Cleaning[J]. Environmental Science & Technology,2020,54(11):6997-7007.
    [12] HAN Z, HAN X, ZHAO X, et al. Iron phthalocyanine supported on amidoximated PAN fiber as effective catalyst for controllable hydrogen peroxide activation in oxidizing organic dyes[J]. Journal of Hazardous Materials,2016,320:27-35. doi: 10.1016/j.jhazmat.2016.08.004
    [13] HAN X, HAN Z, LI J, et al. Coordinative integration of copper (II) and iron (II) phthalocyanine into amidoximated PAN fiber for enhanced photocatalytic activity under visible light irradiation[J]. Journal of Colloid and Interface Science,2019,533:333-343. doi: 10.1016/j.jcis.2018.08.076
    [14] HAN X, HAN Z, ZHAO J, et al. Photocatalytic degradation of formaldehyde by PAN nonwoven supported Fe(III) catalysts under visible light irradiation[J]. New Journal of Chemistry,2017,41(17):9380-9387. doi: 10.1039/C7NJ00964J
    [15] DONG Y, DONG W, CAO Y, et al. Preparation and catalytic activity of Fe alginate gel beads for oxidative degradation of azo dyes under visible light irradiation[J]. Catalysis Today,2011,175(1):346-355. doi: 10.1016/j.cattod.2011.03.035
    [16] 高婷婷, 周蓉, 丁彬, 等. PAN/CNT复合纳米纤维膜的制备及其红外辐射特性[J]. 东华大学学报自然科学版, 2019, 45(2):169-175.

    GAO T T, ZHOU R, DING B, et al. Preparation and infrared radiative properties of the PAN/CNT composite nanofiber mat[J]. Journal of Donghua University (Natural Science),2019,45(2):169-175(in Chinese).
    [17] YANG S, YU B, WANG Z, et al. Research on the modification of PAN hollow fiber membrane with high heavy metal ions adsorption[J]. Ferroelectrics,2019,547(1):121-128. doi: 10.1080/00150193.2019.1592491
    [18] WANG W, DONG A, WEN Z. Preparation of a rough hydrophobic surface on Jute fibers via silica hydrosol modification and properties of fiber-reinforced polylactic acid composites[J]. Bioresources,2020,15(1):290-301.
    [19] WANG M, SUN F, ZENG H, et al. Modified polyethersulfone ultrafiltration membrane for enhanced antifouling capacity and dye catalytic degradation efficiency[J]. Separations,2022,9(4):92. doi: 10.3390/separations9040092
    [20] SUN S B, YAO H, FU W Y, et al. Reactive Photo-Fenton ceramic membranes: Synthesis, characterization and antifouling performance[J]. Water Research,2018,144:690-698. doi: 10.1016/j.watres.2018.08.002
    [21] BARON C, REFSGAARD H H, SKIBSTED L H, et al. Oxidation of bovine serum albumin initiated by the Fenton reaction-effect of EDTA, tert-butylhydroperoxide and tetrahydrofuran[J]. Free Radical Research,2006,40(4):409-417. doi: 10.1080/10715760600565752
    [22] 杨桂芹, 李朝晖, 林章祥, 等. TiO2对牛血清白蛋白的光催化降解的研究[J]. 光谱学与光谱分析, 2005, 8:1309-1311.

    YANG G Q, LI Z H, LIN Z X, et al. Investigation of TiO2 photocatalytic degradation of bovine serum albumin[J]. Spectroscopy and Spectral Analysis,2005,8:1309-1311(in Chinese).
  • 加载中
计量
  • 文章访问数:  154
  • HTML全文浏览量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 修回日期:  2023-01-13
  • 录用日期:  2023-01-16
  • 网络出版日期:  2023-02-13

目录

    /

    返回文章
    返回