留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

各向异性导电PP-MWCNTs/HDPE复合材料的结构及性能

石素宇 赵康 张笑源 罗飞 王亚蒙

石素宇, 赵康, 张笑源, 等. 各向异性导电PP-MWCNTs/HDPE复合材料的结构及性能[J]. 复合材料学报, 2022, 39(10): 1-7 doi: 10.13801/j.cnki.fhclxb.20211028.002
引用本文: 石素宇, 赵康, 张笑源, 等. 各向异性导电PP-MWCNTs/HDPE复合材料的结构及性能[J]. 复合材料学报, 2022, 39(10): 1-7 doi: 10.13801/j.cnki.fhclxb.20211028.002
Suyu SHI, Kang ZHAO, Xiaoyuan ZHANG, Fei LUO, Yameng WANG. Structure and properties of PP-MWCNTs/HDPE composites with anisotropic conductivity[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 1-7. doi: 10.13801/j.cnki.fhclxb.20211028.002
Citation: Suyu SHI, Kang ZHAO, Xiaoyuan ZHANG, Fei LUO, Yameng WANG. Structure and properties of PP-MWCNTs/HDPE composites with anisotropic conductivity[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 1-7. doi: 10.13801/j.cnki.fhclxb.20211028.002

各向异性导电PP-MWCNTs/HDPE复合材料的结构及性能

doi: 10.13801/j.cnki.fhclxb.20211028.002
基金项目: 河南省科技攻关项目 (212102210287);河南省大学生创新创业训练计划项目 (S202111517012X)
详细信息
    通讯作者:

    石素宇,博士,副教授,研究方向为聚合物功能复合膜的研究及开发 E-mail: ssymail@126.com

  • 中图分类号: TB332

Structure and properties of PP-MWCNTs/HDPE composites with anisotropic conductivity

  • 摘要: 各向异性导电高分子复合材料(ACPCs)因其独特的各向异性导电特性在许多领域得到广泛应用。本文以高密度聚乙烯(HDPE)、聚丙烯(PP)和多壁碳纳米管(MWCNTs)为原料,通过三层吹膜技术制备中间层导电、内外两层绝缘的三层复合膜,再利用热压成型技术制备具有交替微层结构的各向异性导电PP-MWCNTs/HDPE复合材料。综合利用DSC、POM、SEM、TEM、拉伸性能及导电性能测试等手段研究了复合材料的结构和性能。结果表明:PP绝缘层和MWCNTs/HDPE导电层交替排列,没有分层、熔并等结构缺陷,界面结合良好;PP-MWCNTs/HDPE复合材料在X方向和Y方向具有优异的导电性能(电阻率低至1.6 Ω·m),比Z方向的电阻率低6~9个数量级;交替微层结构的存在增强了复合材料的力学性能,进一步拓宽了导电复合材料的应用范围。

     

  • 图  1  交替微层PP-MWCNTs/HDPE复合材料的制备流程示意图

    Figure  1.  Schematic depiction of the preparation process of PP-MWCNTs/HDPE composites with alternating microlayer

    图  2  不同层数PP-MWCNTs/HDPE复合材料的POM图像

    Figure  2.  POM images of PP-MWCNTs/HDPE composites with different layers

    图  3  不同层数PP-MWCNTs/HDPE复合材料的SEM图像

    Figure  3.  SEM images of PP-MWCNTs/HDPE composites with different layers

    图  4  20层PP-MWCNTs/HDPE复合材料的TEM图像

    Figure  4.  TEM images of PP-MWCNTs/HDPE composites with 20 layers

    图  5  不同层数PP-MWCNTs/HDPE复合材料三个方向的电阻率

    Figure  5.  Electrical resistivity of PP-MWCNTs/HDPE composites with different layers in three directions

    图  6  PP-MWCNTs/HDPE复合材料导电各向异性强度与层数关系图

    Figure  6.  Relationship between anisotropy intensity and layer number of PP-MWCNTs/HDPE composite

    图  7  不同层数PP-MWCNTs/HDPE复合材料的DSC升温曲线

    Figure  7.  DSC heating curves of PP-MWCNTs/HDPE composites with different layers

    图  8  不同层数PP-MWCNTs/HDPE复合材料的应力-应变曲线

    Figure  8.  Stress-strain curves of PP-MWCNTs/HDPE composites with different layers

    表  1  PP-MWCNTs/HDPE复合材料的拉伸性能

    Table  1.   Tensile properties of PP-MWCNTs/HDPE composites

    SampleE/GPaσ/MPaWb/(MJ·m−3)
    10 layers19.7014.410.84
    15 layers21.0122.411.24
    20 layers24.7623.121.83
    25 layers43.8130.562.78
    30 layers50.9134.142.99
    Notes: E—Young's modulus; σ—Tensile strength; Wb—Toughness.
    下载: 导出CSV
  • [1] WAN J Y, SONG J W, YANG Z, et al. Highly anisotropic conductors[J]. Advanced Materials,2017,29(41):1703331-1703339. doi: 10.1002/adma.201703331
    [2] ZENG Z H, JIN H, CHEN M J, et al. Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding[J]. Advanced Functional Materials,2016,26(2):303-310. doi: 10.1002/adfm.201503579
    [3] WU S Y, LADANI R B, ZHANG J, et al. Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites[J]. Carbon,2015,94:607-618. doi: 10.1016/j.carbon.2015.07.026
    [4] VALENTINI L, BON S B, KENNY J M. Anisotropic electrical transport properties of aligned carbon nanotube/PMMA films obtained by electric-field-assisted thermal annealing[J]. Macromolecular Materials and Engineering,2010,293(11):867-871. doi: 10.1002/mame.200800218
    [5] LI X H, CAI J, SHI Y Y, et al. Remarkable conductive anisotropy of metallic microcoil/PDMS composites made by electric field induced alignment[J]. ACS Applied Materials & Interfaces,2017,9(2):1593-1601. doi: 10.1021/acsami.6b13505
    [6] FANG F, LI Y Q, HUANG G W, et al. Electrical anisotropy and multidimensional pressuresensor of aligned Fe3O4@silver nanowire/polyaniline composite films under an extremely low magnetic field[J]. RSC Advances,2017,7(8):4260-4268. doi: 10.1039/C6RA25128E
    [7] SHI Y D, YU H O, LI J, et al. Low magnetic field-induced alignment of nickel particles in segregated poly(L-lactide)/poly(ε-caprolactone)/multi-walled carbon nanotube nanocomposites: Towards remarkable and tunable conductive anisotropy[J]. Chemical Engineering Journal,2018,347:472-482. doi: 10.1016/j.cej.2018.04.147
    [8] MA Q L, WANG J X, DONG X T, et al. Flexible janus nanoribbons array: A new strategy to achieve excellent electrically conductive anisotropy, magnetism, and photoluminescence[J]. Advanced Functional Materials,2015,25(16):2436-2443. doi: 10.1002/adfm.201500348
    [9] LIU M K, DU Y F, MIAO Y E, et al. Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes[J]. Nanoscale,2015,7(3):1037-1046. doi: 10.1039/C4NR06117A
    [10] LIU S, LIU Y, CEBECI H, et al. High electromechanical response of ionic polymer actuators with controlled-morphology aligned carbon nanotube/nafion nanocomposite electrodes[J]. Advanced Functional Materials,2010,20(19):3266-3271. doi: 10.1002/adfm.201000570
    [11] HUANG S Q, LI L, YANG Z B, et al. A new and general fabrication of an aligned carbon nanotube/polymer film for electrode applications[J]. Advanced Materials,2011,23(40):4707-4710. doi: 10.1002/adma.201102472
    [12] YIN K Z, ZHOU Z, SCHUELE D E, et al. Effects of interphase modification and biaxial orientation on dielectric properties of poly(ethylene terephthalate)/poly(vinylidene fluoride-co-hexafluoropropylene) multilayer films[J]. ACS Applied Materials & Interfaces,2016,8(21):13555-13566. doi: 10.1021/acsami.6b01287
    [13] GAO W L, ZHENG Y, SHEN J B, et al. Electrical properties of polypropylene-based composites controlled by multilayered distribution of conductive particles[J]. ACS Applied Materials & Interfaces,2015,7(3):1541-1549. doi: 10.1021/am506773c
    [14] LU J R, WENG W G, CHEN X F, et al. Piezoresistive materials from directed shear-induced assembly of graphite nanosheets in polyethylene[J]. Advanced Functional Materials,2010,15(8):1358-1363. doi: 10.1002/adfm.200400298
    [15] HUANG J R, ZHU Y T, JIANG W, et al. Parallel carbon nanotube stripes in polymer thin film with remarkable conductive anisotropy[J]. ACS Applied Materials & Interfaces,2014,6(3):1754-1758. doi: 10.1021/am404758d
    [16] JIANG K, YU F L, BAI H W, et al. Alternating multilayer structure of polyethylene/polypropylene blends obtained through injection molding[J]. Journal of Applied Polymer Science,2012,124(6):4452-4456. doi: 10.1002/app.35451
    [17] MARTIN C A, SANDLER J K W, WINDLE A H, et al. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites[J]. Polymer,2005,46(3):877-886. doi: 10.1016/j.polymer.2004.11.081
    [18] ZHAO K, LI S S, HUANG M, et al. Remarkably anisotropic conductive MWCNTs/polypropylene nanocomposites with alternating microlayers[J]. Chemical Engineering Journal,2019,358:924-935. doi: 10.1016/j.cej.2018.10.078
    [19] 中国国家标准化管理委员会. 塑料拉伸性能的测定: GB/T 1040.3—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People’s Republic of China. Plastics—Determination of tensile properties: GB/T 1040.3—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [20] LIU Z Z, LIU X H, ZHENG G Q, et al. Mechanical enhancement of melt-stretched β-nucleated isotactic polypropylene: The role of lamellar branching of β-crystal[J]. Polymer Testing,2017,58:227-235. doi: 10.1016/j.polymertesting.2017.01.002
    [21] WU D M, GAO X L, SUN J Y, et al. Spatial confining forced network assembly for preparation of high-performance conductive polymeric composites[J]. Composites Part A: Applied Science and Manufacturing,2017,102:88-95. doi: 10.1016/j.compositesa.2017.07.027
    [22] DENG H, ZHANG R, REYNOLDS C T, et al. A novel concept for highly oriented carbon nanotube composite tapes or fibres with high strength and electrical conductivity[J]. Macromolecular Materials and Engineering,2009,294(11):749-755. doi: 10.1002/mame.200900151
    [23] SHI S Y, PAN Y M, LU B, et al. Realizing the simultaneously improved toughness and strength of ultra-thin LLDPE parts through annealing[J]. Polymer,2013,54(25):6843-6852. doi: 10.1016/j.polymer.2013.10.020
    [24] QIN Y J, XU Y H, ZHANG L Y, et al. Interfacial interaction enhancement by shear-induced β-cylindrite in isotactic polypropylene/glass fiber composites[J]. Polymer,2016,100:111-118. doi: 10.1016/j.polymer.2016.08.016
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  54
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 录用日期:  2021-10-18
  • 修回日期:  2021-10-13
  • 网络出版日期:  2021-10-28
  • 刊出日期:  2022-10-15

目录

    /

    返回文章
    返回