留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米SiO2-硅烷协同改性对玄武岩纤维/环氧树脂复合材料力学性能及蠕变性能的影响

别依诺 朱四荣 贺攀 陆士平

别依诺, 朱四荣, 贺攀, 等. 纳米SiO2-硅烷协同改性对玄武岩纤维/环氧树脂复合材料力学性能及蠕变性能的影响[J]. 复合材料学报, 2022, 39(8): 3723-3732. doi: 10.13801/j.cnki.fhclxb.20210928.001
引用本文: 别依诺, 朱四荣, 贺攀, 等. 纳米SiO2-硅烷协同改性对玄武岩纤维/环氧树脂复合材料力学性能及蠕变性能的影响[J]. 复合材料学报, 2022, 39(8): 3723-3732. doi: 10.13801/j.cnki.fhclxb.20210928.001
BIE Yinuo, ZHU Sirong, HE Pan, et al. Effect of nano-SiO2 particles-silane synergistic modification on mechanical properties and creep properties of basalt fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3723-3732. doi: 10.13801/j.cnki.fhclxb.20210928.001
Citation: BIE Yinuo, ZHU Sirong, HE Pan, et al. Effect of nano-SiO2 particles-silane synergistic modification on mechanical properties and creep properties of basalt fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3723-3732. doi: 10.13801/j.cnki.fhclxb.20210928.001

纳米SiO2-硅烷协同改性对玄武岩纤维/环氧树脂复合材料力学性能及蠕变性能的影响

doi: 10.13801/j.cnki.fhclxb.20210928.001
基金项目: 中央高校基本科研业务费专项资金(2018IB001)
详细信息
    通讯作者:

    朱四荣,博士,教授,博士生导师,研究方向为复合材料结构设计及复合材料长期力学性能研究  E-mail:zhusirong@whut.edu.cn

  • 中图分类号: TB332

Effect of nano-SiO2 particles-silane synergistic modification on mechanical properties and creep properties of basalt fiber/epoxy composites

  • 摘要: 分别采用硅烷偶联剂和纳米SiO2粒子-硅烷偶联剂对玄武岩纤维(BF)进行表面改性,通过缠绕成型工艺制备了玄武岩纤维/环氧树脂(BF/EP)复合材料。采用万能材料试验机测定了BF的拉伸性能和BF/EP复合材料的弯曲性能,借助FESEM观察了纤维表面及其复合材料弯曲断裂断口的形貌,自制三点弯曲蠕变测试装置测定了BF/EP复合材料2544 h的长期蠕变性能,采用万能材料试验机在不同应力水平下测定了BF/EP复合材料6000 s的短时蠕变性能,并分析了纤维表面改性对各项力学性能的影响。结果表明,在BF上浆剂中引入纳米SiO2粒子后,纤维的拉伸性能、BF/EP复合材料的弯曲性能均得到有效改善。FESEM形貌显示BF的协同改性提高了纤维与树脂界面的粘结性能;2544 h的低应力长期蠕变实验及6000 s的不同应力水平短时蠕变实验中,均表现出蠕变柔量及其增长速率的显著降低;在20%、30%、40%及50%初始弯曲强度加载时的短时蠕变实验中,由蠕变曲线重合的应力值,可大致得到材料线性蠕变的应力阈值。使用Hooke-Kelvin-Kelvin (HKK)模型可有效描述BF/EP复合材料在低应力水平下的长期蠕变性能,由此可进行其蠕变性能指标的长期预测。

     

  • 图  1  BF表面形貌

    Figure  1.  Surface morphologies of BF

    图  2  玄武岩纤维/环氧树脂 (BF/EP) 复合材料弯曲断口形貌

    Figure  2.  Flexural fracture morphologies of basalt fiber/epoxy (BF/EP) composites

    图  3  BF/EP复合材料弯曲应力-弯曲应变曲线

    Figure  3.  Flexural stress-flexural strain curves of BF/EP composites

    图  4  BF/EP复合材料蠕变柔量随时间的变化曲线

    Figure  4.  Curves of creep compliance of BF/EP composites vs. time

    图  5  不同应力水平下BF/EP复合材料蠕变柔量随时间的变化曲线

    Figure  5.  Curves of creep compliance of BF/EP composites at different stress levels vs. time

    图  6  各应力水平下BF/EP复合材料蠕变柔量增量随时间的变化曲线

    Figure  6.  Curves of creep compliance increment of BF/EP composites at different stress levels vs. time

    图  7  Hooke-Kelvin-Kelvin(HKK)蠕变模型

    Figure  7.  Hooke-Kelvin-Kelvin (HKK) creep model

    图  8  HKK模型拟合BF/EP复合材料蠕变柔量随时间的变化曲线

    Figure  8.  Curves of creep compliance of BF/EP composites vs. time fitted by HKK model

    表  1  纳米SiO2-硅烷偶联剂KH-560协同改性玄武岩纤维(BF)正交试验因素水平表

    Table  1.   Orthogonal test factor and level table of basalt fiber (BF) modified by nano-SiO2-silane coupling agent KH-560

    LevelFactor
    Nano-SiO2 dispersion (A)Lubricant (B)KH-560 (C)
    1 0 0 0
    2 1.5 0.4 0.5
    3 5 1 1
    下载: 导出CSV

    表  2  BF丝束强度正交试验分析

    Table  2.   Orthogonal test analysis of BF bundle strength

    TestColumn
    1A2B3CP/(N·(10−6 kg·m−1)−1)
    1 1 1 1 0.49
    2 1 2 2 0.59
    3 1 3 3 0.60
    4 2 1 2 0.63
    5 2 2 3 0.64
    6 2 3 1 0.61
    7 3 1 3 0.57
    8 3 2 1 0.59
    9 3 3 2 0.62
    k1 0.560 0.563 0.563
    k2 0.627 0.607 0.613
    k3 0.593 0.610 0.603
    Range 0.067 0.047 0.050
    Optimum schem A2 B3 C2
    Notes: P−Tensile strength of BF bundle; ki−Average of level i.
    下载: 导出CSV

    表  3  BF及其浸胶纱的拉伸性能

    Table  3.   Tensile properties of BF and its resin-impregnated yarn

    SampleP/(N·(10−6 kg·m−1)−1)σt/MPaEt/GPa
    KH-560-BF 0.57 2722.8 89.1
    SiO2-KH-560-BF 0.66 2859.6 91.7
    Notes: KH-560-BF—BF modified by KH-560; SiO2-KH-560-BF—BF modified by nano-SiO2 particles-KH-560; σt—Tensile strength of BF resin-impregnated yarn; Et—Tensile modulus of BF resin-impregnated yarn.
    下载: 导出CSV

    表  4  BF/EP复合材料弯曲性能

    Table  4.   Flexural properties of BF/EP composites

    Sampleσf/MPaEf/GPa
    KH-560-BF/EP 837.5 26.6
    SiO2-KH-560-BE/EP 1165.5 34.2
    Notes: KH-560-BF/EP—BF/EP made of BF modified by KH-560; SiO2-KH-560-BF/EP—BF/EP made of BF modified by nano-SiO2 particles; σf-Flexural strength; Ef-Flexural modulus.
    下载: 导出CSV

    表  5  HKK模型拟合参数

    Table  5.   Fitting parameters of HKK model

    SampleE0/GPaE1/GPaE2/GPaη1/(GPa·h)η2/(GPa·h)R2
    KH-560-BF/EP 30.18 350.82 1381.22 200466.79 4417.78 0.99
    SiO2-KH-560-BF/EP 43.11 881.41 2155.41 404318.58 5889.18 0.99
    Notes: Ei—Elastic modulus of each spring model (i=0, 1, 2); ηiViscosity coefficient of each Kelvin model (i=1, 2); R2—Goodness of fit.
    下载: 导出CSV

    表  6  BF/EP复合材料蠕变柔量计算值与实验值对比 (2544 h)

    Table  6.   Comparison of calculated and experimental values of creep compliance of BF/EP composites (2544 h)

    SampleCt/(10−11 Pa−1)Cc/(10−11 Pa−1)Deviations/%
    KH-560-BF/EP 3.73 3.67 −1.70
    SiO2-KH-560-BF/EP 2.51 2.48 −1.19
    Notes: Ct—Experimental value of creep compliance; Cc—Calculated value of creep compliance.
    下载: 导出CSV
  • [1] BHAT T, FORTOMARIS D, KANDARE E, et al. Properties of thermally recycled basalt fibres and basalt fibre composites[J]. Journal of Materials Science,2018,53(3):1933-1944. doi: 10.1007/s10853-017-1672-7
    [2] 叶国锐, 晏义伍, 曹海琳. 氧化石墨烯改性玄武岩纤维及其增强环氧树脂复合材料性能[J]. 复合材料学报, 2014, 31(6):1402-1408.

    YE G R, YAN Y W, CAO H L. Basalt fiber modified with graphene oxide and properties of its reinforced epoxy composites[J]. Acta Materiae Compositae Sinica,2014,31(6):1402-1408(in Chinese).
    [3] FIORE V, SCALICI T, BELLA G D, et al. A review on basalt fibre and its composites[J]. Composites Part B: Engineer-ing,2015,74:74-94. doi: 10.1016/j.compositesb.2014.12.034
    [4] 靳婷婷, 申士杰, 李静, 等. 低温等离子处理对玄武岩纤维表面及复合材料性能的影响[J]. 玻璃钢/复合材料, 2015(6):29-35.

    JIN T T, SHEN S J, LI J, et al. Impact on the surface of basalt fiber and composite material properties of low-temperature plasma treatment[J]. Fiber Reinforced Plastics/Composites,2015(6):29-35(in Chinese).
    [5] 王晓东, 云斯宁, 张太宏, 等. 硅烷偶联剂表面改性玄武岩纤维增强复合材料研究进展[J]. 材料导报, 2017, 31(5):77-83. doi: 10.11896/j.issn.1005-023X.2017.05.013Advances

    WANG X D, YUN S N, ZHANG T H, et al. Advances in basalt fiber-reinforced composites modified by silane coupling agents[J]. Materials Reports,2017,31(5):77-83(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.05.013Advances
    [6] 张运华, 姚丽萍, 徐仕进, 等. 表面处理玄武岩纤维增强水泥基复合材料力学性能[J]. 复合材料学报, 2017, 34(5):1159-1166.

    ZHANG Y H, YAO L P, XU S J, et al. Mechanical properties of cement matrix composites reinforced with surface treated basalt fibers[J]. Acta Materiae Compositae Sinica,2017,34(5):1159-1166(in Chinese).
    [7] SEPE R, BOLLINO F, BOCCARUSSO L, et al. Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites[J]. Composites Part B: Engineering,2018,133:210-217. doi: 10.1016/j.compositesb.2017.09.030
    [8] BOZKURT O Y, BULUT M, ERKLIG A, et al. Axial and lateral buckling analysis of fiber reinforced S-glass/epoxy composites containing nano-clay particles[J]. Composites Part B: Engineering,2018,158:82-91.
    [9] RALPH C, LEMOINE P, ARCHER E, et al. Mechanical properties of short basalt fibre reinforced polypropylene and the effect of fibre sizing on adhesion[J]. Composites Part B: Engineering,2019,176:107260. doi: 10.1016/j.compositesb.2019.107260
    [10] FAZELI M, FLOREZ J P, SIMAO R A. Improvement in adhesion of cellulose fibers to the thermoplastic starch matrix by plasma treatment modification[J]. Composites Part B: Engineering,2019,163:207-216. doi: 10.1016/j.compositesb.2018.11.048
    [11] YAO Z Q, WANG C G, WANG Y X. In situ growth of CNTs on carbon fiber by chemical vapor deposition[C]//IOP Conference Series: Earth and Environmental Science. Bristol: IOP Publishing, 2019: 012075.
    [12] TAMRAKAR S, HAQUE B Z, JOHN W, et al. High rate test method for fiber-matrix interface characterization[J]. Polymer Testing,2016,52:174-183. doi: 10.1016/j.polymertesting.2016.04.016
    [13] 梁娜, 朱四荣, 陈建中. 一种新的聚合物基复合材料应力松弛经验模型[J]. 复合材料学报, 2017, 34(10):2205-2210.

    LIANG N, ZHU S R, CHEN J Z. A new empirical model for stress relaxation of polymer matrix[J]. Acta Materiae Compositae Sinica,2017,34(10):2205-2210(in Chinese).
    [14] NEDJAR B. Directional damage gradient modeling of fiber/matrix debonding in viscoelastic UD composites[J]. Composite Structures,2016,153(10):895-901.
    [15] 袁燕, 范汶鑫, 王延相, 等. 玄武岩纤维表面生长碳纳米管及其复合材料性能的研究[J]. 材料导报, 2016, 30(S2):32-34, 40.

    YUAN Y, FAN W X, WANG Y X, et al. Basalt fiber with carbon nanotubes grown on its surface and the corresponding reinforced resin composite[J]. Materials Reports,2016,30(S2):32-34, 40(in Chinese).
    [16] YU S, OH K H, HONG S H. Enhancement of the mechanical properties of basalt fiber-reinforced polyamide 6, 6 composites by improving interfacial bonding strength through plasma-polymerization[J]. Composites Science and Technology,2019,182:107756. doi: 10.1016/j.compscitech.2019.107756
    [17] JIA H, LIU C, QIAO Y, et al. Enhanced interfacial and mechanical properties of basalt fiber reinforced poly (aryl ether nitrile ketone) composites by amino-silane coupling agents[J]. Polymer,2021,230:124028. doi: 10.1016/j.polymer.2021.124028
    [18] CHIMENI D Y, HIRSCHBERG V, DUBOIS C, et al. Rheological behavior of composites made from linear medium-density polyethylene and hemp fibers treated by surface-initiated catalytic polymerization[J]. Rheologica Acta,2018,57(6):445-457.
    [19] WANG X M, PETRU M, YU H. The effect of surface treatment on the creep behavior of flax fiber reinforced composites under hygrothermal aging conditions[J]. Construction and Building Materials,2019,208:220-227. doi: 10.1016/j.conbuildmat.2019.03.001
    [20] 韩霞, 王继辉, 倪爱清, 等. 应力水平和纤维角度对CGF/PP复合材料蠕变行为的影响及其Burgers模型参数的数值预测[J]. 复合材料学报, 2019, 36(5):1216-1225.

    HAN X, WANG J H, NI A Q, et al. Effects of stress levels and fiber orientations on creep behavior of CGF/PP composite and numerical prediction of Burgers model parameters[J]. Acta Materiae Compositae Sinica,2019,36(5):1216-1225(in Chinese).
    [21] 中国国家标准化管理委员会. 玄武岩纤维无捻粗纱: GB/T 25045—2010[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of the People’s Republic of China. Basalt fiber roving: GB/T 25045—2010[S]. Beijing: China Standards Press, 2010(in Chinese).
    [22] 中国国家标准化管理委员会. 玻璃纤维无捻粗纱 浸胶纱试样的制作和拉伸强度的测定: GB/T 20310—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People’s Republic of China. Textile glass-Rovings-Manufacture of test specimens and determination of tensile strength of impregnated rovings: GB/T 20310—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [23] 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fibre-reinforced plastic composites-Determination of flexural properties: GB/T 1449—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [24] The British Standards Institution. GRP tanks and vessels for use above ground-Part 3: Design and workmanship: EN 13121-3—2016[S]. London: BSI Standards Limited, 2016.
    [25] 应淑妮. 玄武岩纤维的性能及其增强热塑性复合材料的界面改性[D]. 上海: 华东理工大学, 2011.

    YING S N. Mechanical performance and interfacial modification of long basalt fiber reinforced thermal plastic composites[D]. Shanghai: East China University of Science and Technology, 2011(in Chinese).
    [26] 梁娜, 朱四荣, 陈建中. 聚合物基复合材料在低应力下的蠕变模型[C]//第二十一届玻璃钢/复合材料学术交流会论文集. 北京: 《玻璃钢/复合材料》编辑部, 2016: 10-13.

    LIANG N, ZHU S R, CHEN J Z. Creep model of polymer matrix composites under low stress[C]//The 21st Glass Fiber Reinforced Plastics/Composites Symposium. Beijing: Fiber Reinforced Plastics/Composites Editorial Office, 2016: 10-13(in Chinese).
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  947
  • HTML全文浏览量:  379
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-21
  • 修回日期:  2021-08-28
  • 录用日期:  2021-09-22
  • 网络出版日期:  2021-09-28
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回