留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

立方体状SrTiO3粉体/聚偏氟乙烯电介质复合薄膜的储能性能

刘少辉 王娇 王菲菲 王远

刘少辉, 王娇, 王菲菲, 等. 立方体状SrTiO3粉体/聚偏氟乙烯电介质复合薄膜的储能性能[J]. 复合材料学报, 2023, 40(8): 4637-4647. doi: 10.13801/j.cnki.fhclxb.20221108.001
引用本文: 刘少辉, 王娇, 王菲菲, 等. 立方体状SrTiO3粉体/聚偏氟乙烯电介质复合薄膜的储能性能[J]. 复合材料学报, 2023, 40(8): 4637-4647. doi: 10.13801/j.cnki.fhclxb.20221108.001
LIU Shaohui, WANG Jiao, WANG Feifei, et al. Energy storage performance of cubic SrTiO3 powder/polyvinylidene fluoride dielectric composite films[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4637-4647. doi: 10.13801/j.cnki.fhclxb.20221108.001
Citation: LIU Shaohui, WANG Jiao, WANG Feifei, et al. Energy storage performance of cubic SrTiO3 powder/polyvinylidene fluoride dielectric composite films[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4637-4647. doi: 10.13801/j.cnki.fhclxb.20221108.001

立方体状SrTiO3粉体/聚偏氟乙烯电介质复合薄膜的储能性能

doi: 10.13801/j.cnki.fhclxb.20221108.001
基金项目: 国家自然科学基金项目(51902088);河南省高校科技创新人才项目(21HASTIT014);河南省优秀青年基金项目 (212300410031);河南省科技攻关计划项目(222102240004)
详细信息
    通讯作者:

    刘少辉,博士,副教授,硕士生导师,研究方向为复合材料 E-mail: qqliushaohui@163.com

  • 中图分类号: TB332

Energy storage performance of cubic SrTiO3 powder/polyvinylidene fluoride dielectric composite films

Funds: National Natural Science Foundation of China (51902088); Program for Science and Technology Innovation Talents in Universities of Henan Province (21HASTIT014); Excellent Youth Fund of Henan Natural Science Foundation (212300410031); Program for Tackling Key Problems in Science and Technology of Henan Province (222102240004)
  • 摘要: 高工作场强、高储能效率的电介质储能材料对提高电力设备的性能、减小电力设备体积具有重要影响。采用混合碱法制备出立方体状SrTiO3粉体作为陶瓷填料,采用聚乙烯吡咯烷酮(PVP)表面包覆改性对立方体状SrTiO3粉体进行表面处理,利用流延法制备出了均匀的聚偏氟乙烯(PVDF)电介质复合薄膜。系统研究了表面PVP包覆改性立方体状SrTiO3粉体对PVDF电介质复合薄膜介电性能和储能密度的影响。结果表明:混合碱法制备出的SrTiO3粉体的形貌为立方体状,尺寸为 200~400 nm,粒径分布比较均匀,PVP的官能团和立方体状SrTiO3粉体的表面建立起共价的相互作用,在立方体状SrTiO3粉体表面形成PVP包覆层,可以有效防止立方体状SrTiO3粉体在PVDF电介质复合薄膜中的团聚,同时PVP包覆层可以改善立方体状SrTiO3粉体在PVDF聚合物中分散和结合情况。PVDF电介质复合薄膜具有良好的介电性能和耐击穿性能,PVDF电介质复合薄膜的介电常数随着填充量的增加而增加,当立方体状SrTiO3粉体填充量为40vol%时,电介质复合薄膜的介电常数为34.9。PVDF电介质复合薄膜的储能密度随着填充量的增加而先增加后降低,当表面PVP包覆改性处理立方体状SrTiO3粉体的填充量为5vol%时,电介质复合薄膜的储能密度达5.3 J/cm3

     

  • 图  1  立方体状SrTiO3粉体和聚乙烯吡咯烷酮(PVP)表面包覆改性SrTiO3粉体的XRD图谱(插图为混合碱法制备SrTiO3粉体的SEM图像)

    Figure  1.  XRD patterns of cubic SrTiO3 powder and polyvinylpyrrolidone (PVP) surface modified SrTiO3 powder (SEM image of SrTiO3 powder prepared by mixed alkali method is shown in the inset)

    图  2  PVP、立方体状SrTiO3粉体和PVP表面包覆改性SrTiO3粉体的FTIR图谱

    Figure  2.  FTIR spectra of PVP, cubic SrTiO3 powder and PVP surface coated modified SrTiO3 powder

    图  3  (a)立方体状SrTiO3粉体和PVP表面包覆改性SrTiO3粉体的XPS全谱扫描图谱;(b) PVP表面改性前后的SrTiO3粉体的O1s元素的精细扫描图谱

    Figure  3.  (a) XPS of cubic SrTiO3 powder and PVP surface coated modified SrTiO3 powder; (b) Fine scanning spectra of O1s elements of SrTiO3 powder before and after PVP surface modification

    图  4  表面PVP包覆改性后SrTiO3粉体的TEM图像:(a) 低倍数;(b) 高倍数

    Figure  4.  TEM images of SrTiO3 powder after surface PVP modification:(a) Low magnifications; (b) High magnifications

    图  5  PVP 表面改性前后立方体状SrTiO3粉体的热失重曲线图

    Figure  5.  TG curves of cubic SrTiO3 powder and PVP surface coated modified SrTiO3 powder

    图  6  填充量为5vol%时聚偏氟乙烯(PVDF)电介质复合薄膜的SEM图像:(a) 未表面改性SrTiO3粉体/PVDF电介质复合薄膜;(b) PVP表面包覆改性SrTiO3粉体/PVDF电介质复合薄膜;(c) PVDF电介质复合薄膜

    Figure  6.  SEM images of polyvinylidene fluoride (PVDF) dielectric composite films at a concentration of 5vol%: (a) Unmodified SrTiO3 powder/PVDF composite films; (b) PVP surface modified SrTiO3 powder/PVDF dielectric composite films; (c) PVDF dielectric composite films

    图  7  (a)不同填充量PVP表面包覆改性SrTiO3粉体/PVDF电介质复合薄膜与未表面改性SrTiO3粉体/PVDF电介质复合薄膜的介电常数对比图;(b)两种PVDF电介质复合薄膜的介电损耗对比图

    Figure  7.  (a) Comparison of dielectric constants of PVP surface modified SrTiO3 powder/PVDF composite films and unmodified SrTiO3 powder/PVDF composite films with different filling amounts of fillers; (b) Comparison of dielectric loss of the PVDF composites films is shown in the inset

    图  8  不同填充量PVP表面包覆改性SrTiO3粉体/PVDF电介质复合薄膜与未表面改性SrTiO3粉体/PVDF电介质复合薄膜的耐击穿场强对比

    Figure  8.  Breakdown strength comparison of PVP surface modified SrTiO3 powder/PVDF composite films and unmodified SrTiO3 powder/PVDF composite films with different filling amount fillers

    图  9  PVP表面包覆改性SrTiO3粉体/PVDF电介质复合薄膜与未表面改性SrTiO3粉体/PVDF电介质复合薄膜的电场强度分布有限元模拟

    Figure  9.  Finite element simulation of electric field distribution of PVP surface modified SrTiO3 powder/PVDF composite films and unmodified SrTiO3 powder/PVDF composite films

    图  10  SrTiO3粉体/PVDF电介质复合薄膜内部电荷的分布示意图

    Figure  10.  Schematic diagram of internal charge distribution of SrTiO3 powder/PVDF composite films

    图  11  电场为1000 kV/cm时PVDF和不同填充浓度的PVDF电介质复合薄膜的极化强度-电场(P-E)曲线

    Figure  11.  Polarization-electric field (P-E) curves of PVDF and PVDF dielectric composites films with different filling concentrations under 1000 kV/cm

    图  12  (a) 不同组分PVDF电解质薄膜最大击穿电场下的P-E曲线图;(b) PVDF和不同填充浓度表面包覆改性SrTiO3粉体/PVDF电介质复合薄膜的储能密度变化曲线

    Figure  12.  (a) P-E curves of PVDF composites films with different filling concentrations under maximum breakdown field; (b) Energy storage density for PVDF and PVDF composites films with different filling amounts of surface-coated with modified SrTiO3 powder

    图  13  SrTiO3粉体填充量为5vol%时未处理表面改性SrTiO3粉体/PVDF电介质复合薄膜和PVP改性SrTiO3粉体/PVDF电介质复合薄膜的储能密度和放电效率曲线关系

    Figure  13.  Energy storage density and discharge efficiency of untreated SrTiO3 powder/PVDF composite films and PVP modified SrTiO3 powder/PVDF composite films at a concentration of 5vol%

    图  14  5vol%PVP改性SrTiO3粉体/PVDF电介质复合薄膜在不同测试频率下的P-E曲线

    Figure  14.  P-E curves of PVP modified SrTiO3 powder/PVDF composite films at a concentration of 5vol%

    表  1  前期文献报道钛酸锶钡陶瓷/PVDF复合材料的储能密度与本文实验结果对比

    Table  1.   Comparison of the energy storage density of PVDF-based composites and the experimental results in this work

    MaterialSurface modification
    method
    Energy storage density/
    (J·cm–3)
    Ref.
    BaTiO3/Poly(vinylidene fluoride-hexafluoropropylene) filmsAminomethyl phosphonic acid3.20[24]
    SrTiO3/PVDF films3.54[25]
    BaTiO3/Poly(vinylidene fluoride-hexafluoropropylene) composite films4.89[26]
    SrTiO3/PVDF filmsPolyvinylpyrrolidone5.30This work
    下载: 导出CSV
  • [1] DING Y C, WU Q, ZHAO D, et al. Flexible PI/BaTiO3 dielectric nanocomposite fabricated by combining electrospinning and electrospraying[J]. European Polymer Journal,2013,49(9):2567-2571. doi: 10.1016/j.eurpolymj.2013.05.016
    [2] HAYASHIDA K, MATSUOKA Y. Highly enhanced dielectric constants of barium titanate-filled polymer composites using polymer-grafted carbon nanotube matrix[J]. Carbon,2013,60:506-513. doi: 10.1016/j.carbon.2013.04.072
    [3] WANG Y, ZHOU X, CHEN Q, et al. Recent development of high energy density polymers for dielectric capacitors[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2010,17(4):1036-1042. doi: 10.1109/TDEI.2010.5539672
    [4] WEI J, JIANG D, YU W, et al. The effect of Hf doping on the dielectric and energy storage performance of barium titanate based glass ceramics[J]. Ceramics International,2021,47(8):11581-11586. doi: 10.1016/j.ceramint.2020.12.290
    [5] XING J, LIU L, SHANG F, et al. Preparation, structure and temperature dependence of spectral properties of Yb3+/Er3+ doped Sr5(PO4)3F transparent glass ceramics[J]. Journal of Alloys and Compounds, 2021, 884: 161018.
    [6] LIU J, LI M, ZHAO Y, et al. Manipulating H-bonds in glassy dipolar polymers as a new strategy for high energy storage capacitors with high pulse discharge efficiency[J]. Journal of Materials Chemistry A,2019,7(33):19407. doi: 10.1039/C9TA05855A
    [7] DUN C, KUANG W, KEMPF N, et al. 3D printing of solution-processable 2D nanoplates and 1D nanorods for flexible thermoelectrics with ultrahigh power factor at low-medium temperatures[J]. Advanced Science,2019,6(23):1901788. doi: 10.1002/advs.201901788
    [8] GUO F, SHEN X, ZHOU J, et al. Highly thermally conductive dielectric nanocomposites with synergistic alignments of graphene and boron nitride nanosheets[J]. Advanced Functional Materials,2020,30(19):1910826. doi: 10.1002/adfm.201910826
    [9] CUI S, CHEN G. Enhanced up-conversion luminescence and optical thermometry characteristics of Er3+/Yb3+ co-doped Sr10(PO4)6O transparent glass-ceramics[J]. Journal of the American Ceramic Society,2020,103(12):6932-6940. doi: 10.1111/jace.17418
    [10] LUO S, YU J, YU S, et al. Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating-ferroelectric microhybrids as fillers[J]. Advanced Energy Materials,2019,9(5):1803204. doi: 10.1002/aenm.201803204
    [11] TANG H X, SODANO H A. Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires[J]. Nano Letters,2013,13(4):1373-1379. doi: 10.1021/nl3037273
    [12] TANG H X, LIN Y R, ANDREWS C, et al. Nanocomposites with increased energy density through high aspect ratio PZT nanowires[J]. Nanotechnology,2011,22(1):015702. doi: 10.1088/0957-4484/22/1/015702
    [13] ZHOU Z, LIN Y R, TANG H X, et al. Hydrothermal growth of highly textured BaTiO3 films composed of nanowires[J]. Nanotechnology,2013,24(9):095602. doi: 10.1088/0957-4484/24/9/095602
    [14] FENG Y, LI W, WANG J, et al. Core-shell structured BaTiO3@carbon hybrid particles for polymer composites with enhanced dielectric performance[J]. Journal of Materials Chemistry A,2015,3(40):20313-20321. doi: 10.1039/C5TA04777C
    [15] FENG Y, LI W, HOU Y, et al. Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape[J]. Journal of Materials Chemistry C,2015,3(6):1250-1260. doi: 10.1039/C4TC02183E
    [16] HOU Y, DENG Y, WANG Y, et al. Uniform distribution of low content BaTiO3 nanoparticles in poly(vinylidene fluoride) nanocomposite: Toward high dielectric breakdown strength and energy storage density[J]. RSC Advances,2015,5(88):72090-72098. doi: 10.1039/C5RA10438F
    [17] JIA Q, HUANG X, WANG G, et al. MoS2 nanosheet superstructures based polymer composites for high dielectric and electrical energy storage applications[J]. The Journal of Physical Chemistry C,2016,120(19):10206-10214. doi: 10.1021/acs.jpcc.6b02968
    [18] FANG L, WU W, HUANG X, et al. Hydrangea-like zinc oxide superstructures for ferroelectric polymer composites with high thermal conductivity and high dielectric constant[J]. Composites Science and Technology,2015,107:67-74. doi: 10.1016/j.compscitech.2014.12.009
    [19] YANG K, HUANG X Y, ZHU M, et al. Combining RAFT polymerization and thiol-ene click reaction for core-shell structured polymer@BaTiO3 nanodielectrics with high dielectric constant, low dielectric loss, and high energy storage capability[J]. ACS Applied Materials & Interfaces,2014,6(3):1812-1822.
    [20] ZHA J W, DANG Z M, YANG T, et al. Advanced dielectric properties of BaTiO3/polyvinylidene-fluoride nanocompo-sites with sandwich multi-layer structure[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2012,19(4):1312-1317. doi: 10.1109/TDEI.2012.6260006
    [21] YAO S H, YUAN J K, ZHOU T, et al. Stretch-modulated carbon nanotube alignment in ferroelectric polymer compo-sites: Characterization of the orientation state and its influence on the dielectric properties[J]. Journal of Physical Chemistry C,2011,115(40):20011-20017. doi: 10.1021/jp205444x
    [22] 钟少龙, 郑明胜, 邢照亮, 等. 无机颗粒形状对高储能密度有机复合材料介电性能的影响[J]. 复合材料学报, 2020, 37(11):2760-2768. doi: 10.13801/j.cnki.fhclxb.20200728.001

    ZHONG Shaolong, ZHENG Mingsheng, XING Zhaoliang, et al. Effect of shape of inorganic particles on dielectric pro-perties of polymer composites with high energy density[J]. Acta Materiae Compositae Sinica,2020,37(11):2760-2768(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200728.001
    [23] 张慧, 衡婷婷, 房正刚, 等. 高储能陶瓷/聚偏氟乙烯复合电介质的研究进展[J]. 复合材料学报, 2021, 38(7):2107-2122. doi: 10.13801/j.cnki.fhclxb.20201030.002

    ZHANG Hui, HENG Tingting, FANG Zhenggang, et al. Research progress of high-energy-density ceramic/poly(vinylidene fluoride) composite dielectrics[J]. Acta Materiae Compositae Sinica,2021,38(7):2107-2122(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201030.002
    [24] KIM P, DOSS N M, TILLOTSON J P, et al. High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer[J]. ACS Nano,2009,3(9):2581-2592. doi: 10.1021/nn9006412
    [25] YU K, WANG H, ZHOU Y C, et al. Enhanced dielectric pro-perties of BaTiO3/poly(vinylidene fluoride) nanocompo-sites for energy storage applications[J]. Journal of Applied Physics,2013,113(3):034105. doi: 10.1063/1.4776740
    [26] 王璐, 孔文杰, 罗行, 等. BaTiO3纳米线的制备及其复合物介电和储能性能研究[J]. 无机材料学报, 2018, 33(10):1059-1064. doi: 10.15541/jim20180041

    WANG Lu, KONG Wenjie, LUO Hang, et al. Dielectric and energy storage property of dielectric nanocomposites with BaTiO3 nanofibers[J]. Journal of Inorganic Materials,2018,33(10):1059-1064(in Chinese). doi: 10.15541/jim20180041
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  651
  • HTML全文浏览量:  335
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-08
  • 修回日期:  2022-10-18
  • 录用日期:  2022-10-25
  • 网络出版日期:  2022-11-08
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回