留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯对水泥基渗透结晶型防水材料抗渗性能的影响

齐孟 蒲云东 杨森 盛况 袁小亚

齐孟, 蒲云东, 杨森, 等. 氧化石墨烯对水泥基渗透结晶型防水材料抗渗性能的影响[J]. 复合材料学报, 2022, 40(0): 1-13
引用本文: 齐孟, 蒲云东, 杨森, 等. 氧化石墨烯对水泥基渗透结晶型防水材料抗渗性能的影响[J]. 复合材料学报, 2022, 40(0): 1-13
Meng QI, Yundong PU, Sen YANG, Kuang SHENG, Xiaoya YUAN. Effect of graphene oxide on the impermeability of cementitious capillary crystalline waterproofing[J]. Acta Materiae Compositae Sinica.
Citation: Meng QI, Yundong PU, Sen YANG, Kuang SHENG, Xiaoya YUAN. Effect of graphene oxide on the impermeability of cementitious capillary crystalline waterproofing[J]. Acta Materiae Compositae Sinica.

氧化石墨烯对水泥基渗透结晶型防水材料抗渗性能的影响

基金项目: 国家自然科学基金(51402030);重庆市基础科学与前沿技术研究专项基金(cstc2017 jcyjBX0028);重庆市教育委员会科学技术研究项目(KJZD-K201800703)
详细信息
    通讯作者:

    袁小亚,博士,教授,硕士生导师,研究方向为纳米复合材料、建筑功能材料、高性能水泥混凝土等领域 E-mail:yuanxy@cqjtu.edu.cn

  • 中图分类号: TU528

Effect of graphene oxide on the impermeability of cementitious capillary crystalline waterproofing

Funds: National Natural Science Foundation of China (51402030) ; Chongqing Special Fund for Basic Science and Advanced Technology Research (cstc2017 jcyjBX0028) ; Chongqing Education Commission Science and Technology Research Project (KJZD-K201800703)
  • 摘要: 研究了木质素磺酸钠(MN)对氧化石墨烯(GO)在模拟水泥水化孔隙液中的分散能力的影响,并研究了MN分散的GO对水泥基渗透结晶型防水材料(CCCW)对水泥砂浆抗渗性能的影响。通过吸光度试验、Zeta电位及原子力显微镜(AFM)研究表明,当MN与GO的质量比为3∶1时,GO在饱和氢氧化钙溶液(CH)中的分散性最佳;砂浆力学强度测试表明,当GO掺量为水泥质量的0.03%时,3 d、28 d的抗折抗压强度相较于不掺入MN的GO砂浆分别提高了39.13%和39.37%、33.84%和33.48%;砂浆抗渗压力和氯离子扩散系数比标准砂浆试件分别提高了160.0%和下降了50.6%;抗渗性能测试表明,当GO掺量为水泥质量的0.03%时,GO改性CCCW涂层抗渗压力比含CCCW的涂层提高了116.7%;微观测试表明,GO促进了水化反应,并在砂浆基质中发挥了填充作用和模板作用,增强了水化产物的密实度,使得砂浆和CCCW抗渗性能增加了。本研究提供了一种GO改性CCCW来提升水泥砂浆的抗渗性能,在涂层防水效果和降低CCCW材料成本等应用价值得到提升。

     

  • 图  1  水泥抗折抗压一体试验机

    Figure  1.  Cement bending and compression testing machine

    图  2  SS-15抗渗仪装置示意图

    Figure  2.  Schematic diagram of SS-15 anti-permeability apparatus

    图  3  GO和MN溶液的紫外可见吸收光谱

    Figure  3.  UV-visible absorption spectrum of GO and MN solution

    图  4  不同含量MN对GO在饱和CH溶液中吸光度的影响

    Figure  4.  Effect of different contents of MN on absorbance of GO in saturated CH solution

    图  5  不同含量MN对GO在饱和CH溶液中Zeta电位的影响

    Figure  5.  Effect of different contents of MN on zeta potential of GO in saturated CH solution

    图  6  不同GO溶液体系的60 min静置图

    Figure  6.  60 min static diagrams of different GO solution systems

    图  7  MN分散的GO的AFM表征

    Figure  7.  AFM characterization of MN dispersed GO

    图  8  MN分散的GO对砂浆抗氯离子渗透的影响

    Figure  8.  Effect of MN dispersed GO on chloride penetration resistance of mortar

    图  9  MN改性GO对水泥砂浆抗渗压力的影响

    Figure  9.  Effect of MN modified GO on impermeability pressure of cement mortar

    图  10  GO改性CCCW对涂层抗渗压力的影响

    Figure  10.  Effect of GO modified CCCW on coating impermeability pressure

    图  11  不同CCCW涂层的28 d净浆SEM图像:(a)基准净浆;(b)C1;(c)C4;(d)C5

    Figure  11.  SEM images of 28 d paste with different CCCW coatings: (a)control slurry; (b)C1; (c)C4; (d)C5

    图  12  不同CCCW净浆涂层的孔径分布图

    Figure  12.  Pore size distribution of different CCCW paste coatings

    图  13  不同CCCW涂层净浆28 d的XRD图谱

    Figure  13.  28 d XRD patterns of different CCCW coating pastes

    表  1  水泥化学成分

    Table  1.   Chemical composition of cement

    MineralAl2O3SiO2Fe2O3CaOMgOSO3NaOf-CaO
    Content/wt%4.4721.53.3765.843.180.30.490.78
    Note: ①—Free calcium oxide.
    下载: 导出CSV

    表  2  用于吸光度和Zeta电位测试的GO溶液组成

    Table  2.   Composition of GO solution for absorbance and zeta potential test

    SampleWater/gCa(OH)2/gPC/mLGO/mLMN
    Y099.30.1600.70
    Y199.30.160.050.70
    Y299.30.160.050.71∶1
    Y399.30.160.050.72∶1
    Y499.30.160.050.73∶1
    Y599.30.160.050.74∶1
    Y699.30.160.050.75∶1
    Notes: PC—Polycarboxylic acid water reducer; GO—Graphene oxide; MN—sodium ligninsulfonate; ①—GO concentration is 3.666 mg/mL; ②—Content of MN is its ratio to GO.
    下载: 导出CSV

    表  3  用于力学性能和抗渗压力测试的GO改性水泥砂浆配合比

    Table  3.   Mix ratio of GO modified cement mortar for mechanical properties and impermeability pressure test

    SampleSand/gCement/gPC/gWater/gGO/%MN/%
    A113504502.716600
    A213504502.716600.03
    A313504502.71660.0050.015
    A413504502.71660.0050
    A513504502.71660.010.03
    A613504502.71660.010
    A713504502.71660.030.09
    A813504502.71660.030
    A913504502.71660.050.15
    A1013504502.71660.050
    Note: ①—Mass ratio to cement.
    下载: 导出CSV

    表  4  基准砂浆配合比

    Table  4.   Mix ratio of reference mortar

    C/gWater/gSand/gCellulose ether/g
    320 260 1350 0.5
    下载: 导出CSV

    表  5  涂层配合比

    Table  5.   Mix ratio of coating

    SampleCCCW/gWater/gPC/%GO/%MN/%
    C1 20 6 0 0 0
    C2 20 6 0.3 0.01 0
    C3 20 6 0.3 0.01 0.03
    C4 20 6 0.3 0.03 0
    C5 20 6 0.3 0.03 0.09
    C6 20 6 0.3 0.05 0
    C7 20 6 0.3 0.05 0.15
    Notes: CCCW—Cementitious capillary crystalline waterproofing material; ①—Mass ratio to CCCW; ②—Mass ratio to CCCW.
    下载: 导出CSV

    表  6  MN分散的GO对水泥砂浆抗折强度和抗压强度的影响

    Table  6.   Effect of MN dispersed GO on the flexural and compressive strength of cement mortar

    SampleFlexural strength (MPa) /changing rate (%)Compressive strength (MPa) /changing rate (%)
    3 d28 d3 d28 d
    A1 4.6±0.25/0 6.5±0.71/0 35.0±0.15/0 45.7±0.83/0
    A2 4.0±0.34−13.04 5.9±0.85−9.23 27.98±0.35−20.05 43.24±0.85−5.38
    A3 5.6±0.35/21.73 7.9±0.75/21.53 38.56±0.25/10.17 52.45±0.93/14.77
    A4 5.5±0.55/19.56 7±0.95/7.69 36.83±0.44/5.23 51.66±1.15/13.04
    A5 5.7±0.05/23.91 7.9±0.35/21.53 42.67±1.35/21.91 54.12±1.55/18.42
    A6 5.6±0.35/21.73 7.1±0.45/9.23 40.88±0.84/16.80 53.73±0.75/17.57
    A7 6.4±0.05/39.13 8.7±1.05/33.84 48.78±1.02/39.37 61.00±1.25/33.48
    A8 6.2±0.65/34.78 8.6±0.84/32.30 45.13±0.05/28.94 58.90±0.55/28.88
    A9 6.3±0.15/36.95 8.2±0.94/26.15 46.35±1.25/32.43 56.75±0.74/24.18
    A10 6.2±0.45/34.78 8.1±0.35/24.61 44.10±0.85/26 54.89±0.65/20.11
    下载: 导出CSV

    表  7  GO提升水泥砂浆抗压抗折强度研究对比

    Table  7.   Comparison of compressive and flexural strength of cement mortar improved by GO

    GOChange rate of flexural strength/%Change rate of compressive strength/%Reference
    3 d28 d3 d28 d
    0.0517.3219.2219.2321.42[18]
    0.0337.232.0550.1433.27[55]
    0.0311.5414.7823.233.29[56]
    0.07−94.6525.42−88.6620.16[57]
    0.0339.1333.8439.3733.48This paper
    Note:①mass ratio to cement.
    下载: 导出CSV
  • [1] Silvestre J. ; Silvestre N.; Brito J. Review on concrete nanotechnology[J]. European Journal of Environmental and Civil Engineering,2016,20(4):455-485. doi: 10.1080/19648189.2015.1042070
    [2] 熊琳强. 防水材料的发展及应用情况综述[J]. 建材发展导向, 2021, 19(12):2-3.

    XIONG Linqiang. Overview of development and application of waterproof materials[J]. Development Guide to Building Materials,2021,19(12):2-3(in Chinese).
    [3] 徐建华. 屋面卷材防水施工技术在建筑工程中的应用[J]. 中国建筑装饰装修, 2021(6):42-43. doi: 10.3969/j.issn.1672-2167.2021.06.017

    XU Jianhua. Application of roofing coil waterproofing construction technology in construction engineering[J]. Chinese architectural decoration,2021(6):42-43(in Chinese). doi: 10.3969/j.issn.1672-2167.2021.06.017
    [4] 李立, 霍胜旭, 罗林刚, 等. 聚氨酯防水涂料与自粘聚合物改性沥青防水卷材复合防水层剥离强度研究[J]. 新型建筑材料, 2021, 48(05):137-139+142. doi: 10.3969/j.issn.1001-702X.2021.05.032

    LI Li, Huo Shengxu, Luo Lingang, et al. Study on peel strength of polyurethane waterproofing coating and self-adhesive polymer modified asphalt waterproofing membrane composite waterproofing layer[J]. New building materials,2021,48(05):137-139+142(in Chinese). doi: 10.3969/j.issn.1001-702X.2021.05.032
    [5] 龚建国, 聂芹, 柯昌银. 弹性体改性沥青防水卷材的性能及应用技术[J]. 江西化工, 2021, 37(01):17-19. doi: 10.3969/j.issn.1008-3103.2021.01.006

    GONG Jianguo, Nie Qin, Ke Changyin. The performance and application technology of elastomer modified asphalt waterproofing membrane[J]. Jiangxi Chemical Industry,2021,37(01):17-19(in Chinese). doi: 10.3969/j.issn.1008-3103.2021.01.006
    [6] 彭方灵. 防水涂料复合使用时粘接性能研究[J]. 江西建材, 2020(12):183-184. doi: 10.3969/j.issn.1006-2890.2020.12.111

    PENG Fangling. Study on bonding properties of waterproof coatings in composite use[J]. Jiangxi Building Materials,2020(12):183-184(in Chinese). doi: 10.3969/j.issn.1006-2890.2020.12.111
    [7] 程赟, 罗健林, 滕飞, 等. 改性防水聚氨酯涂料的性能评价[J]. 聚氨酯工业, 2021, 36(3):41-43. doi: 10.3969/j.issn.1005-1902.2021.03.013

    CHENG Yun, Luo Jianlin, Teng Fei, et al. Performance evaluation of modified waterproof polyurethane coatings[J]. Polyurethane industry,2021,36(3):41-43(in Chinese). doi: 10.3969/j.issn.1005-1902.2021.03.013
    [8] 余奕帆. 防水与密封材料绿色产品评价国家标准修订方向探讨[J]. 中国建筑防水, 2021(S01):46-50.

    YU Yifan. Discussion on the revision direction of national standard for green product evaluation of waterproofing and sealing materials[J]. Waterproofing of buildings in China,2021(S01):46-50(in Chinese).
    [9] 李华, 姜勇. 沥青基防水涂料及密封粘结材料探讨[J]. 建材发展导向, 2021, 19(20):82-83.

    LI Hua, Jiang Yong. Discussion on asphalt base waterproof coating and sealing adhesive material[J]. Development Guide to Building Materials,2021,19(20):82-83(in Chinese).
    [10] 纪宪坤, 徐可. 防水混凝土, 结构自防水, 刚性防水及工程应用[J]. 中国建筑防水, 2020(10):49-57.

    JI Xiankun, XU Ke. Waterproof concrete, structural self-waterproofing, rigid waterproofing and engineering application[J]. Waterproofing of Chinese buildings,2020(10):49-57(in Chinese).
    [11] 胡骏. 论刚性防水 [J]. 中国建筑防水, 2020, (7): 1-7+13.

    HU Jun. On rigid waterproofing [J] Waterproof building, 2020, (7): 1-7+13 (in Chinese).
    [12] 程福星, 邓小旭, 向飞, 等. 新型刚性结构自防水材料对混凝土抗渗防裂性能的影响研究[J]. 新型建筑材料, 2021, 48(4):119-122+126. doi: 10.3969/j.issn.1001-702X.2021.04.029

    CHENG Fuxing, Deng Xiaoxu, Xiangfei, et al. Study on the influence of new rigid structure self-waterproof materials on the impermeability and crack resistance of concrete[J]. New building materials,2021,48(4):119-122+126(in Chinese). doi: 10.3969/j.issn.1001-702X.2021.04.029
    [13] 张鹏, 赵士坤, 陈继周, 等. 纳米粒子和PVA纤维增强水泥基复合材料抗渗性能研究[J]. 硅酸盐通报, 2017(S1):153-157.

    ZHANG Peng, Zhao Shikun, Chen Jizhou, et al. Study on the impermeability of nano-particles and PVA fiber reinforced cement matrix composites[J]. Silica notification,2017(S1):153-157(in Chinese).
    [14] 刘金秀, 戴涛, 徐子芳. 不同纤维改性水泥基复合材料的试验研究[J]. 非金属矿, 2021, 44(6):42-44. doi: 10.3969/j.issn.1000-8098.2021.06.011

    LIU Jinxiu, Dai Tao, Xu Zifang. Experimental study on different fiber modified cement-based composites[J]. Nonmetallic ore,2021,44(6):42-44(in Chinese). doi: 10.3969/j.issn.1000-8098.2021.06.011
    [15] 程志海, 杨森, 袁小亚. 石墨烯及其衍生物掺配水泥基材料研究进展[J]. 复合材料学报, 2021, 38(2):339-360.

    CHENG Zhihai, Yang Sen, Yuan Xiaoya. Research progress on cement-based materials doped with graphene and its derivatives[J]. Journal of Composite Materials,2021,38(2):339-360(in Chinese).
    [16] 李建仙. 氧化石墨烯对水泥基复合材料性能影响研究[J]. 人民黄河, 2020, 42(2):54-57+62. doi: 10.3969/j.issn.1000-1379.2020.02.011

    LI Jianxian. Study on the effect of graphene oxide on the properties of cement-based composites[J]. Renmin Yellow River,2020,42(2):54-57+62(in Chinese). doi: 10.3969/j.issn.1000-1379.2020.02.011
    [17] XU G, DU S, HE J, et al. The role of admixed graphene oxide in a cement hydration system[J]. Carbon,2019,148:141-50. doi: 10.1016/j.carbon.2019.03.072
    [18] 魏致强, 王远贵, 齐孟, 等. 没食子酸协同聚羧酸减水剂分散氧化石墨烯及其对水泥砂浆性能的影响[J]. 材料导报, 2021, 35(10):10042-10047. doi: 10.11896/cldb.20040258

    WEI Zhiqiang, Wang Yuangui, Qi Meng, et al. gallic acid and polycarboxylate superplasticizer dispersed graphene oxide and its influence on the performance of cement mortar[J]. Material report,2021,35(10):10042-10047(in Chinese). doi: 10.11896/cldb.20040258
    [19] 袁小亚, 曾俊杰, 高军, 等. 氧化石墨烯与石墨烯复掺对水泥砂浆性能影响研究[J]. 重庆交通大学学报:自然科学版, 2019, 38(9):45-50.

    YUAN Xiaoya, Zeng Junjie, Gao Jun, et al. Study on the effect of graphene oxide and graphene on the properties of cement mortar[J]. Journal of Chongqing Jiaotong University:Natural Science Edition,2019,38(9):45-50(in Chinese).
    [20] 杜涛. 氧化石墨烯水泥基复合材料性能研究 [D]. 哈尔滨工业大学, 2014.

    DU Tao. Graphene oxide cement-based composites performance research [D]. harbin Institute of Technology, 2014 (in Chinese).
    [21] 王明刚. 氧化石墨烯改善水泥基复合材料性能的影响研究 [J]. 公路交通技术, 2020, 36(3): 37-41.

    WANG Minggang. Study on the effect of graphene oxide on the properties of cement-based composites [J] Highway, transportation technology, 2020: 36(3): 37-41 (in Chinese).
    [22] CHINTALAPUDI K, PANNEM R M R. An intense review on the performance of Graphene Oxide and reduced Graphene Oxide in an admixed cement system[J]. Construction and Building Materials,2020,259:120598-120617. doi: 10.1016/j.conbuildmat.2020.120598
    [23] ZHAO L, GUO X, SONG L, et al. An intensive review on the role of graphene oxide in cement-based materials[J]. Construction and Building Materials,2020,241:117939-117956. doi: 10.1016/j.conbuildmat.2019.117939
    [24] LIN Y, DU H. Graphene reinforced cement composites: A review[J]. Construction and Building Materials,2020,265:120312-120328. doi: 10.1016/j.conbuildmat.2020.120312
    [25] GAO Y, JING H, ZHOU Z, et al. Reinforced impermeability of cementitious composites using graphene oxide-carbon nanotube hybrid under different water-to-cement ratios[J]. Construction and Building Materials,2019,222:610-621. doi: 10.1016/j.conbuildmat.2019.06.186
    [26] ZHANG Q, QIAN X, THEBO K H, et al. Controlling reduction degree of graphene oxide membranes for improved water permeance[J]. Science Bulletin,2018,63(12):788-794. doi: 10.1016/j.scib.2018.05.015
    [27] ZHANG Y T, ZUO L, YANG J C, et al. Influence of Cementitious Capillary Crystalline Waterproofing Material on the Water Impermeability and Microstructure of Concrete[J]. Materials Science Forum,2019,953:209-214. doi: 10.4028/www.scientific.net/MSF.953.209
    [28] ZHENG W, CHEN W G, FENG T, et al. Enhancing chloride ion penetration resistance into concrete by using graphene oxide reinforced waterborne epoxy coating[J]. Progress in Organic Coatings,2020,138:105389-105398. doi: 10.1016/j.porgcoat.2019.105389
    [29] ZHU Q, HUANG Y, LI Y, et al. Aluminum dihydric tripolyphosphate/polypyrrole-functionalized graphene oxide waterborne epoxy composite coatings for impermeability and corrosion protection performance of metals[J]. Advanced Composites and Hybrid Materials,2021,4(3):780-792. doi: 10.1007/s42114-021-00265-6
    [30] ZENG H, LAI Y, QU S, et al. Effect of graphene oxide on permeability of cement materials: An experimental and theoretical perspective[J]. Journal of Building Engineering,2021,41:102326-102339. doi: 10.1016/j.jobe.2021.102326
    [31] LIU C, HUANG X, WU Y-Y, et al. The effect of graphene oxide on the mechanical properties, impermeability and corrosion resistance of cement mortar containing mineral admixtures[J]. Construction and Building Materials,2021,288:123059-123070. doi: 10.1016/j.conbuildmat.2021.123059
    [32] 张友来. 氧化石墨烯/硅烷复合乳液的制备及其对混凝土耐久性能的影响研究 [D]. 青岛理工大学.

    ZHANG Youlai Preparation of graphene oxide / Silane Composite Emulsion and its effect on durability of concrete [D]. Qingdao University of technology (in Chinese).
    [33] 高飞, 刘清, 姚国友, 等. 水泥基渗透结晶型防水材料的试验研究[J]. 低温建筑技术, 2021, 43(6):7-10+15.

    GAO Fei, Liu Qing, Yao Guoyou, et al. Experimental study on cement-based permeable crystalline waterproofing materials[J]. Low temperature building technology,2021,43(6):7-10+15(in Chinese).
    [34] 傅杰, 孙振平. 水泥基渗透结晶型防水材料的种类及作用机理[J]. 江西建材, 2020 (S1): 4-5+9.

    FU Jie, Sun Zhenping. Types and mechanism of cement-based permeable crystalline waterproofing materials [J]. Jiangxi Building Materials, 2020 (S1) : 4-5 + 9 (in Chinese).
    [35] 刘月雷, 杨洋, 李福海, 等. 水泥基渗透结晶型防水材料作用机理及性能评价[J]. 市政技术, 2021, 39(11):146-151+156.

    LIU Yuelei, Yang Yang, Li Fuhai, et al. Mechanism and performance evaluation of cement-based permeable crystalline waterproofing materials[J]. Municipal technology,2021,39(11):146-151+156(in Chinese).
    [36] ALMUSALLAM A A, KHAN F M, DULAIJAN S U, et al. Effectiveness of surface coatings in improving concrete durability[J]. Cement and Concrete Composites,2003,25(4-5):473-481. doi: 10.1016/S0958-9465(02)00087-2
    [37] 姚嘉诚, 延永东, 徐鹏飞, 等. 水泥基渗透结晶型防水材料和纳米二氧化硅改性混凝土自修复性能的研究[J]. 硅酸盐通报, 2020, 39(6):1772-1777.

    YAO Jiacheng, Yan Yongdong, Xu Pengfei, et al. Study on self-healing properties of cement-based permeable crystalline waterproofing materials and nano-silica modified concrete[J]. Silicate notification,2020,39(6):1772-1777(in Chinese).
    [38] 丁向群, 邢进, 刘东涛. 内掺渗透结晶防水材料混凝土的渗透性能研究[J]. 混凝土, 2016(9):120-123. doi: 10.3969/j.issn.1002-3550.2016.09.032

    DING Xiangqun, Xing Jin, Liu Dongtao. Study on the permeability of concrete with permeable crystalline waterproofing materials[J]. Concrete,2016(9):120-123(in Chinese). doi: 10.3969/j.issn.1002-3550.2016.09.032
    [39] 孙学志. 渗透结晶型涂料对普通混凝土抗渗性能的影响[J]. 新型建筑材料, 2011(4):53-55. doi: 10.3969/j.issn.1001-702X.2011.04.016

    SUN Xuezhi. Effect of penetration crystalline coating on impermeability of ordinary concrete[J]. New building materials,2011(4):53-55(in Chinese). doi: 10.3969/j.issn.1001-702X.2011.04.016
    [40] 姚嘉诚, 延永东, 徐鹏飞, 等. 水泥基渗透结晶型防水材料和纳米二氧化硅改性混凝土自修复性能的研究[J]. 硅酸盐通报, 2020, 39(6):1772-1777.

    YAO Jiacheng, Yan Yongdong, Xu Pengfei, et al. Study on self-healing properties of cement-based permeable crystalline waterproofing materials and nano-silica modified concrete[J]. Silicate notification,2020,39(6):1772-1777(in Chinese).
    [41] 郭璞. 高粘结高抗渗水泥基渗透结晶型防水材料的研究[J]. 山西建筑, 2016, 42(12):95-96. doi: 10.3969/j.issn.1009-6825.2016.12.052

    GUO Pu. Research on high bond and high impermeability cement-based permeable crystalline waterproofing materials[J]. Shanxi Building,2016,42(12):95-96(in Chinese). doi: 10.3969/j.issn.1009-6825.2016.12.052
    [42] 鲁宗平, 李海斌. 水泥基渗透结晶型防水材料的正交优化及抗渗性能研究[J]. 安徽建筑大学学报, 2019, 27(1):5-49+89.

    LU Zongping, Li Haibin. Orthogonal optimization and impermeability of cement-based permeable crystalline waterproofing materials[J]. Journal of Anhui Jianzhu University,2019,27(1):5-49+89(in Chinese).
    [43] GB/T 17671-2021, 水泥胶砂强度检验方法(ISO法) [S] . 国家市场监督管理总局;国家标准化管理委员会. 2021.

    GB / T 17671 - 2021, strength test method of cement mortar ( ISO method ) [S]. State Administration of Market Supervision and Administration; national Standardization Management Committee. 2021 (in Chinese).
    [44] JGJ/T 70-2009, 建筑砂浆基本性能试验方法标准 [S]. 行业标准-建筑工业. 2009.

    JGJ / T 70-2009, Standard Test Method for Basic Performance of Building Mortar [S]. Industry Standard-Building Industry. 2009 (in Chinese).
    [45] JC 474-2008, 砂浆、混凝土防水剂[S]. 中国建筑材料科学研究总院. 2008.

    JC 474-2008, mortar, concrete waterproofing agent [S]. China Academy of Building Materials Science Research. 2008. (in Chinese).
    [46] 混凝土氯离子扩散系数测定仪: [S]. 国内-行业标准-行业标准-建筑工业 CN-JG, 2009.

    Concrete chloride diffusion coefficient tester: [S]. Domestic-industry standard-industry standard-building industry CN-JG, 2009 (in Chinese).
    [47] GB 18445-2012, 水泥基渗透结晶型防水材料[S]. 中国国家标准化管理委员会. 2012.

    GB 18445-2012, cementitious capillary crystalline waterproof material [S]. China National Standardization Management Committee. 2012. (in Chinese).
    [48] XIAOYA Y, JIAWEI N, JUNJIE Z, et al. Cement-Induced Coagulation of Aqueous Graphene Oxide with Ultrahigh Capacity and High Rate Behavior[J]. Nanomaterials,2018,8(8):574-588. doi: 10.3390/nano8080574
    [49] 袁小亚, 曾俊杰, 牛佳伟, 等. 不同减水剂对氧化石墨烯掺配水泥胶砂力学性能及微观结构的影响[J]. 功能材料, 2018, 49(10):10184-10189. doi: 10.3969/j.issn.1001-9731.2018.10.032

    YUAN Xiaoya, Zeng Junjie, Niu Jiawei, et al. Effect of different water reducing agents on mechanical properties and microstructure of grapene oxide doped cement mortar[J]. Functional materials,2018,49(10):10184-10189(in Chinese). doi: 10.3969/j.issn.1001-9731.2018.10.032
    [50] 郭畅. 氧化石墨烯及其两种功能化材料的制备与表征 [D]. 昆明理工大学, 2019.

    GUO Chang Preparation and characterization of graphene oxide and its two functional materials [D]. Kunming University of technology, 2019. (in Chinese).
    [51] 苏恒. 石墨烯制备中氧化及非水介质中还原方法的研究 [D]; 武汉理工大学.

    SU Heng. Study on oxidation and reduction methods in non-aqueous medium in the preparation of graphene [D]. Wuhan University of technology. (in Chinese).
    [52] 程连勇, 龚建贵, 曾艳, 等. 不同缓凝剂对水泥凝结时间的影响[J]. 混凝土世界, 2017(7):86-93. doi: 10.3969/j.issn.1674-7011.2017.07.016

    CHENG Lianyong, Gong Jiangui, Zeng Yan, et al. Effects of different retarders on setting time of cement[J]. Concrete world,2017(7):86-93(in Chinese). doi: 10.3969/j.issn.1674-7011.2017.07.016
    [53] 马聪, 韩伟, 周桂政. 改性磷铝酸盐水泥缓凝剂优选试验研究[J]. 新型建筑材料, 2014(5):7-10. doi: 10.3969/j.issn.1001-702X.2014.05.002

    MA Cong, Han Wei, Zhou Guizheng. Modified phosphoaluminate cement retarder optimization experimental research[J]. New building materials,2014(5):7-10(in Chinese). doi: 10.3969/j.issn.1001-702X.2014.05.002
    [54] LV S, HU H, HOU Y, et al. Investigation of the Effects of Polymer Dispersants on Dispersion of GO Nanosheets in Cement Composites and Relative Microstructures/Performances[J]. Nanomaterials,2018,8(12):964-982. doi: 10.3390/nano8120964
    [55] 袁小亚, 杨雅玲, 周超, 等. 氧化石墨烯改性水泥砂浆力学性能及微观机理研究[J]. 重庆交通大学学报:自然科学版, 2017, 36(12):36-42.

    YUAN Xiaoya, Yang Yaling, Zhou Chao, etc. Research on mechanical properties and microscopic mechanism of graphene oxide modified cement mortar[J]. Journal of Chongqing Jiaotong University:Natural Science Edition,2017,36(12):36-42(in Chinese).
    [56] 盛况, 杨森, 毕俊峰, 等. 有机染料辅助分散氧化石墨烯及其对水泥砂浆强度和耐久性的影响[J]. 复合材料学报, 2022, 39:1-14.

    SHENG Kuang, Yang Sen, Bi Junfeng, et al. Organic dye-assisted dispersion of graphene oxide and its influence on the strength and durability of cement mortar[J]. Journal of Composite Materials,2022,39:1-14(in Chinese).
    [57] 王远贵, 袁小亚, 高军, 等. 蔗糖对氧化石墨烯掺配砂浆流动性与力学性能影响研究[J]. 硅酸盐通报, 2020, 39(11):3453-3462.

    WANG Yuangui, Yuan Xiaoya, Gao Jun, etc. Research on the influence of sucrose on the fluidity and mechanical properties of graphene oxide doped mortar[J]. Silica notification,2020,39(11):3453-3462(in Chinese).
    [58] Zeng H, Y Lai, Qu S, et al. Effect of graphene oxide on permeability of cement materials: An experimental and theoretical perspective[J]. Journal of Building Engineering,2021,41(4):102326-102339.
    [59] Liu Changjiang, et al. The effect of graphene oxide on the mechanical properties, impermeability and corrosion resistance of cement mortar containing mineral admixtures [J]. Construction and Building Materials, 288.12(2021): 123059-123070.
  • 加载中
计量
  • 文章访问数:  80
  • HTML全文浏览量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-02
  • 录用日期:  2022-04-23
  • 修回日期:  2022-04-05
  • 网络出版日期:  2022-05-13

目录

    /

    返回文章
    返回