留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CoO@NiMo-O(P)分级复合材料的制备及其超级电容性能

武比 秦丽溶 赵建伟 向源吉

武比, 秦丽溶, 赵建伟, 等. CoO@NiMo-O(P)分级复合材料的制备及其超级电容性能[J]. 复合材料学报, 2021, 39(0): 1-9
引用本文: 武比, 秦丽溶, 赵建伟, 等. CoO@NiMo-O(P)分级复合材料的制备及其超级电容性能[J]. 复合材料学报, 2021, 39(0): 1-9
Bi WU, Lirong QIN, Jianwei ZHAO, Yuanji XIANG. Preparation of hierarchical CoO@NiMo-O(P) composites and its supercapacitive performance[J]. Acta Materiae Compositae Sinica.
Citation: Bi WU, Lirong QIN, Jianwei ZHAO, Yuanji XIANG. Preparation of hierarchical CoO@NiMo-O(P) composites and its supercapacitive performance[J]. Acta Materiae Compositae Sinica.

CoO@NiMo-O(P)分级复合材料的制备及其超级电容性能

基金项目: 重庆市自然科学基金项目(cstc2019jcyj-msxmX0311)和中央高校基本科研业务费专项资金(XDJK2020B055)
详细信息
    通讯作者:

    秦丽溶,博士,副教授,硕士生导师,研究方向为纳米材料的合成与电化学性能  E-mail: lrqin@swu.edu.cn

  • 中图分类号: TB333

Preparation of hierarchical CoO@NiMo-O(P) composites and its supercapacitive performance

  • 摘要: 超级电容器具有充放电快、比电容高、循环稳定性好等优点,已成为一种重要的储能器件,其性能主要取决于电极材料的电化学性能。具有高比表面积和环境友好性的复合纳米材料,是超级电容器的理想电极材料。本文中,首先采用水热法在碳布基底上制备了氢氧化钴纳米线,并以纳米线为基体,在其上二次水热合成镍钼氢氧化物纳米片,再经过低温退火和磷化,最终获得了CoO@NiMo-O(P)分级复合纳米材料。利用SEM、TEM以及XPS等技术对样品形貌、结构和元素化合价进行了表征和分析。电化学测试结果表明:该分级复合纳米材料具有良好的电容性能,在1 A/g的电流密度下比电容可达1304.55 F/g,且在10 A/g的电流密度下经过1000次充放电后,比电容保持率高达87%,表现出了良好的循环特性。

     

  • 图  1  制备CoO@NiMo-O(P)分级复合材料的流程示意图

    Figure  1.  Schematic illustration of the synthesis process of the CoO@NiMo-O(P) composites

    图  2  生长在碳布上的Co(OH)2纳米线的低倍(a)和高倍(b)SEM图;(c) Co(OH)2纳米线EDS谱图;(d)和(e)在Co(OH)2纳米线上生长NiMo-O(OH)纳米片后的SEM图;(f)相应的EDS谱图;(g)和(h) CoO@NiMoO4纳米复合材料的SEM图;(i)复合材料CoO@NiMo-O(P)的EDS谱图;(j)和(k)最终产物CoO@NiMo-O(P)的SEM图;(l)最终产物CoO@NiMo-O(P)的EDS谱图

    Figure  2.  Low (a) and high (b) magnification SEM images of the Co(OH)2 nanowires grown on carbon cloth; (c) EDS spectrum of the Co(OH)2 nanowires; (d) and (e) SEM images of the NiMo-O(OH) nanoflakes grown on the Co(OH)2 nanowires; (f) EDS spectrum of the nanoflakes; (g) and (h) SEM images of the CoO@NiMoO4 composites; (i) EDS spectrum of the composites of CoO@NiMo-O(P); (j) and (k) SEM images of the final product of CoO@NiMo-O(P); (l) Corresponding EDS spectrum of the final product of CoO@NiMo-O(P)

    图  3  CoO@NiMo-O(P)分级复合材料的SEM图(a)及能量色散X射线谱图((b)~(f))

    Figure  3.  SEM images (a) and energy dispersive X-ray spectroscopy (EDS) mapping ((b)-(f)) of CoO@NiMo-O(P) hierarchical composites

    图  4  (a)实验中各步骤所得样品的 XRD谱图; (b)和(c)为最终样品CoO@NiMo-O(P)的TEM图和相应的SAED谱图

    Figure  4.  (a) XRD spectra of the materials obtained in the experiment process; (b) and (c) TEM image of the final product and the corresponding SAED pattern of CoO@NiMo-O(P)

    图  5  (a) CoO@NiMo-O(P)复合纳米材料XPS元素测定总谱图; XPS高分辨图:(b) Co 2p; (c) Ni 2p; (d) Mo 3d; (e) O 1s; (f) P 2p

    Figure  5.  XPS survey spectrum (a) and high-resolution XPS spectra of Co 2p (b), Ni 2p (c), Mo 3d (d), O 1s (e) and P 2p (f) of CoO@NiMo-O(P) hierarchical composites

    图  6  (a) CoO@NiMo-O(P), CoO@NiMoO4, NiMo-O(P), Co-O(P)在30 mV/s扫速下的循环伏安特性;(b) 上述四种材料在1 A/g电流密度下的恒电流充放电性能;(c) CoO@NiMo-O(P) 不同扫速下的循环伏安特性;(d) CoO@NiMo-O(P)在不同电流密度下的恒电流充放电特性;(e) CoO@NiMo-O(P)、NiMo-O(P)和Co-O(P)在10 A/g电流密度下充放电1000次的稳定性;(f) CoO@NiMo-O(P)复合材料稳定性测试前后的阻抗对比图,插图:CoO@NiMo-O(P)与CoO@NiMoO4的阻抗对比图

    Figure  6.  (a) CV curves of CoO@NiMo-O(P), CoO@NiMoO4, NiMo-O(P), Co-O(P) at a scan rate of 30 mV/s; (b) GCD curves of the above fore materials at a current density of 1A/g; (c) CV curves of CoO@NiMo-O(P) composite at different scanning rates; (d) GCD curves of CoO@NiMo-O(P) at different current densities; (e) Cycling performance of CoO@NiMo-O(P), NiMo-O(P) and Co-O(P) electrode at a current density of 10 A/g, and (f) Nyquist plots of CoO@NiMo-O(P) before and after 1000 cycles. Inset: Nyquist plots of CoO@NiMoO4 and CoO@NiMo-O(P)

    表  1  不同超级电容器电极材料充放电性能对比

    Table  1.   Comparison of GCD with different electrode materials for supercapacitor

    Electrode materialsElectrolyte KOH/(mol·L−1)Current density/(A·g−1)Specific capacity/(F·g−1)Reference
    CoO@NiMo-O(P)311304.55This work
    Ni1.4Mn0.6P611060[38]
    Ni2P@CoP331776.8[39]
    Ni-CoP@C@CNT31708.1[40]
    CoP21302.9[41]
    下载: 导出CSV
  • [1] 苏小辉, 谢启星, 何青青, 等. α-MnO2@氮掺杂TiO2/碳纸多孔结构构筑高性能超级电容器[J]. 复合材料学报, 2021, 38(0):1-10.

    SU X H, XIE Q X, HE Q Q, et al. Building a high-performance supercapacitor with α-MnO2@Nitrided TiO2/carbon fiber paper porous structure[J]. Acta Materiae Compositae Sinica,2021,38(0):1-10(in Chinese).
    [2] 韦会鸽, 李桂星, 万同, 等. 聚乳酸基聚苯胺柔性可降解超级电容器的制备及性能[J]. 复合材料学报, 2021, 38(0):1-10.

    WEI H G, LI G X, WAN T, et al. Polyaniline growing on polylactic acid substrate towards flexible and biodegradable supercapacitors[J]. Acta Materiae Compositae Sinica,2021,38(0):1-10(in Chinese).
    [3] 胡彬, 张红平, 姜丽丽. 碳化氧化石墨烯/壳聚糖超级电容器电极复合材料的制备及表征[J]. 复合材料学报, 2018, 35(3):661-667.

    HU B, ZHANG H P, JIANG L L. Preparation of carbonized graphene oxide/chitosan composites and their application as electrode composites for supercapacitors[J]. Acta Materiae Compositae Sinica,2018,35(3):661-667(in Chinese).
    [4] 董永光, 李生娟, 罗意, 等. 高性能NiCoP基超级电容器电化学性能[J]. 无机化学学报, 37(6): 9.

    Dong Y G, Li S J, Luo Y, et al. Electrochemical performance of nicop-based supercapacitor[J]. Chinese Journal of Ingorganic Chemistry, 37(6): 9(in Chinese).
    [5] YAO P Y, LI Z, ZHU J C, et al. Controllable synthesis of NiCo-LDH/Co(OH)2@PPY composite via electrodeposition at high deposition voltages for high-performance supercapacitors[J]. Journal of Alloys and Compounds,2021,875:160042. doi: 10.1016/j.jallcom.2021.160042
    [6] ACHARYA J W, PARK M, KIM B J, et al. Leaf-Like Integrated Hierarchical NiCo2O4 Nanosheets Electrodes for High-Rate Asymmetric Supercapacitors[J]. Journal of Alloys and Compounds,2021,884:161165. doi: 10.1016/j.jallcom.2021.161165
    [7] ZHOU Q F, GONG Y, TAO K Y. Calcination/phosphorization of dual Ni/Co-MOF into NiCoP/C nanohybrid with enhanced electrochemical property for high energy density asymmetric supercapacitor[J]. Electrochimica Acta, 320: 134582
    [8] HE S X, GUO F J, YANG Q, et al. Design and Fabrication of Hierarchical NiCoP–MOF Heterostructure with Enhanced Pseudocapacitive Properties[J]. Small, 17,2100:353.
    [9] LI Z, MA K J, GUO F J, et al. Construction of homologous Ni2P/NiCoP heterostructure for enhanced pseudocapacitive properties[J]. Materials Letters,2021,288:129319. doi: 10.1016/j.matlet.2021.129319
    [10] XU F, XIA Q, DU G P, et al. Coral–like Ni2P@C derived from metal–organic frameworks with superior electrochemical performance for hybrid supercapacitors[J]. Electrochimica Acta,2021:138200.
    [11] WANG F M, CHEN J W, QI X P, et al. Increased nucleation sites in nickel foam for the synthesis of MoP@Ni3P/NF nanosheets for bifunctional water splitting[J]. Applied Surface Science,2019,481(JUL.1):1403-1411.
    [12] YANG Y Y, ZHOU Y, HU Z A, et al. 3D thin-wall cell structure nickel-cobalt-molybdenum ternary phosphides on carbon cloth as high-performance electrodes for asymmetric supercapacitors[J]. Journal of Alloys and Compounds,2019,772:683-692. doi: 10.1016/j.jallcom.2018.09.134
    [13] XU Z Y, DU C C, YANG H K, et al. NiCoP@CoS tree-like core-shell nanoarrays on nickel foam as battery-type electrodes for supercapacitors[J]. Chemical Engineering Journal,2020,421(12):127871.
    [14] LIU Y, MA Z L, XIN N, et al. High-performance supercapacitor based on highly active P-doped one-dimension/two-dimension hierarchical NiCo2O4/NiMoO4 for efficient energy storage[J]. Journal of Colloid and Interface Science,2021,601:793-802. doi: 10.1016/j.jcis.2021.05.095
    [15] HAN R X, GUAN L X, ZHANG S, et al. Boosted cycling stability of CoP nano-needles based hybrid supercapacitor with high energy density upon surface phosphorization[J]. Electrochimica Acta,2020,368:137690.
    [16] XIANG F F, ZHOU X Y, YUE X Q, et al. An oxygen-deficient cobalt-manganese oxide nanowire doped with P designed for high performance asymmetric supercapacitor[J]. Electrochimica Acta,2021,379:138178. doi: 10.1016/j.electacta.2021.138178
    [17] ZHU Z N, TIAN W, LV X B, et al. P-doped cobalt carbonate hydroxide@NiMoO4 double-shelled hierarchical nanoarrays anchored on nickel foam as a bi-functional electrode for energy storage and conversion - ScienceDirect[J]. Journal of Colloid and Interface Science,2020,587:855-863.
    [18] LIU J N, DENG X Y, ZHU S, et al. Porous oxygen-doped NiCoP nanoneedles for high performance hybrid supercapacitor[J]. Electrochimica Acta,2020:368.
    [19] YUAN Z, WANG H Y, SHEN J L, et al. Hierarchical Cu2S@NiCo-LDH double-shelled nanotube arrays with enhanced electrochemical performance for hybrid supercapacitors[J]. Journal of Materials Chemistry A,2020,8(43):22163-22174.
    [20] LV X, HUANG W X, SHI Q W, et al. Synthesis of amorphous NiCozVxOy nanosphere as a positive electrode materials via a facile route for asymmetric supercapacitors[J]. Journal of Power Sources,2021,492:229623. doi: 10.1016/j.jpowsour.2021.229623
    [21] HUANG C H, HU Y Z, JIANG S P, et al. Amorphous nickel-based hydroxides with different cation substitutions for advanced hybrid supercapacitors[J]. Electrochimica Acta,2019,325:134936. doi: 10.1016/j.electacta.2019.134936
    [22] LIU C L, ZHANG G, YU L, et al. Oxygen Doping to Optimize Atomic Hydrogen Binding Energy on NiCoP for Highly Efficient Hydrogen Evolution[J]. Small,2018,14(22):1800421. doi: 10.1002/smll.201800421
    [23] LEI X Y, GE S C, YANG T Y, et al. Ni–Mo–S@Ni–P composite materials as binder-free electrodes for aqueous asymmetric supercapacitors with enhanced performance - ScienceDirect[J]. Journal of Power Sources, 477: 229022.
    [24] LU Y, YU H, CHEN C, et al. Sulfide@hydroxide core–shell nanostructure via a facile heating-electrodeposition method for enhanced electrochemical and photoelectrochemical water oxidation - ScienceDirect[J]. Journal of Energy Chemistry,2020,58:431-440.
    [25] HU Z Y, MIAO Y D, XUE X L, et al. CuO@NiCoFe-S core-shell nanorod arrays based on Cu foam for high performance energy storage[J]. Journal of Colloid and Interface Science,2021,599:34-45. doi: 10.1016/j.jcis.2021.04.085
    [26] LI J X, ZHAO J W, QIN L R, et al. Hierarchical Co(OH)2@NiMoS4 nanocomposite on carbon cloth as electrode for high-performance asymmetric supercapacitors[J]. RSC Advances,2020,10(38):22606-22615. doi: 10.1039/D0RA03253K
    [27] MIAO C X, ZHOU C L, WANG H E, et al. Hollow Co–Mo–Se nanosheet arrays derived from metal-organic framework for high-performance supercapacitors[J]. Journal of Power Sources,2021,490:229532. doi: 10.1016/j.jpowsour.2021.229532
    [28] LEI N, MA P P, YU B, et al. Anion-intercalated supercapacitor electrode based on perovskite-type SrB0.875Nb0.125O3(B=Mn, Co)[J]. Chemical Engineering Journal,2020,421:127790.
    [29] MIAO W K, HAN Q H, ZHANG H M, et al. Uniform phosphorus doped CoWO4@NiWO4 nanocomposites for asymmetric supercapacitors[J]. Journal of Alloys and Compounds,2021,877:160301. doi: 10.1016/j.jallcom.2021.160301
    [30] FANG X T, WU P C, FU J W. Facile construction of N, P and O ternary self-doped hollow carbon microspheres with hierarchical porous structure for environmental applications[J]. Microporous and Mesoporous Materials,2021,321:111135. doi: 10.1016/j.micromeso.2021.111135
    [31] ZHENG G F, HUANG Z C, LIU Z. Cooperative utilization of beet pulp and industrial waste fly ash to produce N/P/O self-co-doped hierarchically porous carbons for high-performance supercapacitors[J]. Journal of Power Sources,2021,482:228935. doi: 10.1016/j.jpowsour.2020.228935
    [32] ZHAO F, ZHENG D H, LIU Y, et al. Flexible Co(OH)2/NiOxHy@Ni hybrid electrodes for high energy density supercapacitors[J]. Chemical Engineering Journal,2021,415(7411):128871.
    [33] LI P F, ZHANG M, YIN H F, et al. Hierarchical mesoporous NiCoP hollow nanocubes as efficient and stable electrodes for high-performance hybrid supercapacitor[J]. Applied Surface Science,2021,536:147751. doi: 10.1016/j.apsusc.2020.147751
    [34] BAASANJAV E, BANDYOPADHYAY P, SAEED G, et al. Dual-ligand modulation approach for improving supercapacitive performance of hierarchical zinc–ickel–ron phosphide nanosheet-based electrode[J]. Journal of Industrial and Engineering Chemistry,2021,99:299-308. doi: 10.1016/j.jiec.2021.04.034
    [35] WAN L, WANG Y M, ZHANG Y, et al. Designing FeCoP@NiCoP heterostructured nanosheets with superior electrochemical performance for hybrid supercapacitors[J]. Journal of Power Sources,2021,506:230096. doi: 10.1016/j.jpowsour.2021.230096
    [36] LIU Z Q, LIU Y, ZHONG Y X, et al. Facile construction of MgCo2O4@CoFe layered double hydroxide core-shell nanocomposites on nickel foam for high-performance asymmetric supercapacitors[J]. Journal of Power Sources,2020,484:229288.
    [37] WANG X W, LI W X, WANG X E, et al. Electrochemical properties of NiCoO2 synthesized by hydrothermal method[J]. RSC Advances,2017,7:50420-50424. doi: 10.1039/C7RA09288A
    [38] WANG Y, CHEN L J, LIN S M, et al. Bimetallic Ni0.4Mn1.6P derived from nickel functionalized a new Mn metal-organic framework for supercapacitor[J]. Materials Today Communications,2021:102057.
    [39] 汪明, 蔡园园, 杨艺, 等. Ni2P@CoP3核壳纳米球的制备、表征及其用于超级电容器性能[J]. 无机化学学报, 2021, 37(9):1633-1641.

    WANG M, CAI Y Y, YANG Y, et al. Synthesis and characterization of Ni2P@CoP3 core-shell nanospheres for supercapacitors[J]. Chinese Journal of Ingorganic Chemistry,2021,37(9):1633-1641(in Chinese).
    [40] GU J L, SUN L, ZHANG Y X, et al. MOF-derived Ni-doped CoP@C grown on CNTs for high-performance supercapacitors[J]. Chemical Engineering Journal,2019,385:123454.
    [41] ZHANG X J, HOU S J, DING Z B, et al. Carbon wrapped CoP hollow spheres for high performance hybrid supercapacitor[J]. Journal of Alloys and Compounds,2019,822(13):153578.
    [42] ZHOU K, ZHOU W J, YANG L J, et al. Ultrahigh-Performance Pseudocapacitor Electrodes Based on Transition Metal Phosphide Nanosheets Array via Phosphorization: A General and Effective Approach[J]. Advanced Functional Materials,2015,25(48):7530-7538. doi: 10.1002/adfm.201503662
  • 加载中
计量
  • 文章访问数:  145
  • HTML全文浏览量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-22
  • 录用日期:  2021-12-08
  • 修回日期:  2021-11-29
  • 网络出版日期:  2022-01-10

目录

    /

    返回文章
    返回