留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内电场增强S型异质结N-C3N4/BiOClxI1-x的制备及其光催化性能

徐凯旋 亢玉龙 高晓明 贺红斌 袁中强 胡亚楠

徐凯旋, 亢玉龙, 高晓明, 等. 内电场增强S型异质结N-C3N4/BiOClxI1-x的制备及其光催化性能[J]. 复合材料学报, 2022, 40(0): 1-11
引用本文: 徐凯旋, 亢玉龙, 高晓明, 等. 内电场增强S型异质结N-C3N4/BiOClxI1-x的制备及其光催化性能[J]. 复合材料学报, 2022, 40(0): 1-11
Kaixuan XU, Yulong KANG, Xiaoming GAO, Hongbin HE, zhongqiang YUAN, yanan HU. Preparation of S-type heterojunction N-C3N4/BiOClxI1-x with internal electric field and enhanced photocatalytic properties[J]. Acta Materiae Compositae Sinica.
Citation: Kaixuan XU, Yulong KANG, Xiaoming GAO, Hongbin HE, zhongqiang YUAN, yanan HU. Preparation of S-type heterojunction N-C3N4/BiOClxI1-x with internal electric field and enhanced photocatalytic properties[J]. Acta Materiae Compositae Sinica.

内电场增强S型异质结N-C3N4/BiOClxI1-x的制备及其光催化性能

基金项目: 陕西省自然科学基金项目(2022 QFY07-03)
详细信息
    通讯作者:

    高晓明,教授,主要从事光催化的研究 联系方式:ydgaoxm@126.com

  • 中图分类号: X75

Preparation of S-type heterojunction N-C3N4/BiOClxI1-x with internal electric field and enhanced photocatalytic properties

Funds: Natural Science Foundation of Shaanxi Province, China(2022 QFY07-03)
  • 摘要:   目的  随着人类社会的发展,环境污染问题愈发严重。苯酚作为一种工业用品,被广泛应用于生产树脂、杀菌剂、防腐剂以及药物等,但其不合理的排放导致水环境污染严重。同时Cr(Ⅵ)作为一种重要的工业化学品,被排放到水环境中很容易被水生物吸收,从而威胁人类健康和生态系统。近年来,光催化技术因其环境友好、成本低、毒性低和高效的优势,被广泛用于环境污染物治理。而在此领域,高效光催化剂的筛选与制备是光催化研究的核心课题。BiOCl光催化材料具有独特的晶体结构和多样的电子结构,为太阳能光催化技术提供了新的突破点。然而,然而,光吸收范围窄、载流子分离效率低、光生电荷迁移速率慢是现有BiOCl光催化材料存在的主要缺陷,严重限制了光催化活性的提高。近年来,人们采用大量的手段,如金属或非金属掺杂、固溶体的构建,提高其光催化效率。  方法  采用水热法制备BiOCl和BiOI,通过调节卤素的比例,制备固溶体BiOClI;以静电自组装的形式构建S-型异质结N-CN/BiOClI。以水中苯酚、Cr(VI)为污染模型,研究N-CN/BiOClI光催化氧化与还原性能。通过捕获实验、ESR、DFT计算研究N-CN/BiOClI的内电场及其对光催化性能增强的机理。  结果  XRD的衍射角偏移、衍射峰强度变化表明BiOClI固溶体与N-CN/BiOClI异质结的结构。FTIR的表面官能团分析说明形成了N-CN/BiOClI异质结。Zeta电位分析证明N-CN与BiOClI是以静电自组装的形式结合。SEM和TEM分析表明N-CN与BiOClI充分接触。XPS表征表明电子N-CN转移BiOClI。光催化实验结果表明N-CN/BiOClI具有优异的光催化氧化有机污染物与还原Cr(VI)的活性。DFT计算表明形成了从N-CN到BiOClI的内部电场,抑制了电子-空穴对的复合,加速了界面载流子的分离和转移。电化学测试、UV-Vis DRS计算表明N-CN/BiOClI异质结具有合适的氧化还原电位。捕获实验、ESR测试表明苯酚的光催化氧化过程中可以产生活性物种·O、·OH。  结论  (1)采用水热法,利用静电自组装的形式制备了N-CN/BiOClI S型异质结光催化剂。(2)在降解和还原的过程中20%N-BiOClI呈现出高的催化性能,可见光照射2.5 h,苯酚的降解率达到98.53%,是N-CN、BiOClI的3.22、2.33倍。在可见光照射1 h时,20%N-BiOClI的Cr(VI)的还原率达到99.11%,是N-CN、BiOClI的13.27、4.54倍。(3)通过ESR技术确定20%N-BiOClI光催化反应过程中主要产生·O和·OH,使用光电子能谱和样品的理论功函数验证了光生电子的流向,结合能带位置,推测光生载流子分离和转移的可能模式为S型。此结构可提升载流子的分离效率,有效抑制光生载流子的复合。(4)N-CN/BiOClI具有强的光吸收,在可见光照下,载流子从N-CN穿过界面转移到BiOClI,在二者的见面处形成强的界面电场,抑制了电子-空穴对的复合。界面电场形成、能带边缘弯曲以及N-CN和BiOClI界面处库仑力的存在,提高了N-CN/BiOClI的光催化性能。

     

  • 图  1  (a) BiOClxI1-x的XRD图谱,(b) BiOClxI1-x在2θ=25-37 °的XRD图谱,(c) N-C3N4/BiOClxI1-x的XRD图谱,(d)样品的FT-IR图谱,(e) N-C3N4的zeta谱图,(f) BiOCl0.5I0.5的zeta谱图

    Figure  1.  (a) XRD pattern of BiOClxI1-x, (b) XRD pattern of BiOClxI1-x at 2θ=25-37 °, (c) XRD pattern of N-C3N4/BiOClxI1-x, (d) FTIR pattern of the as-prepared samples, (e) the zeta spectrum of N-C3N4 (f) the zeta spectrum of BiOCl0.5I0.5

    图  2  样品的HR-XPS:(a) Bi4f,(b) Cl2p,(c) O1s,(d) I3d,(e) N1s,(f) C1s

    Figure  2.  HR-XPS of the sample: (a) Bi4f, (b) Cl2p, (c) O1s, (d) I3d, (e) N1s, (f) C1s

    图  3  样品的SEM图像:(a) BiOI,(b) BiOCl0.5I0.5,(c) 20%N-BiOCl0.5I0.5局部放大图

    Figure  3.  SEM image: (a) BiOI (b) BiOCl0.5I0.5 (c) partial enlargement of 20%N-BiOCl0.5I0.5

    图  4  (a-c) 20%N-BiOCl0.5I0.5的TEM图,(d-j) 20%N-BiOCl0.5I0.5的EDS mapping,分别为Bi、Cl、O、I、C

    Figure  4.  (a-c) TEM image of 20%N-BiOCl0.5I0.5, (d-j) EDS mapping of 20%N-BiOCl0.5I0.5, corresponding to Bi, Cl, O, I, N and C respectively

    图  5  (a) N-BiOClxI1-x的UV-Vis漫反射谱图,(b) BiOClxI1-x的带隙

    Figure  5.  (a) The UV-Vis DRS of N-BiOClxI1-x, (b) band gap of N-BiOClxI1-x

    图  6  N-C3N4(a)和BiOCl0.5I0.5(b)的Mott-schottky曲线,(c)能带结构

    Figure  6.  (a) Mott schottky curve N-C3N4, (b) mott schottky curve BiOCl0.5I0.5, (c) band structure

    C-2Interfacial capacitance; F-2Frequency

    图  7  (a)苯酚的光催化降解曲线,(b,c)光催化还原六价铬曲线和表观速率常数,(d) 20%N-BiOCl0.5I0.5循环降解苯酚稳定性测试,(e) 20%N-BiOCl0.5I0.5在五个循环前后的XRD图谱,(f) 20%N-BiOCl0.5I0.5可见光降解苯酚的TOC去除率

    Figure  7.  (a) Photocatalytic degradation curve of phenol, (b, c) photocatalytic reduction curve and apparent rate constant of Cr(Ⅵ), (d) recycling use of 20% N-BiOCl0.5I0.5 for phenol degradation, (e) XRD patters of before and after five cycles of 20% N-BiOCl0.5I0.5 for for phenol degradation, (f) removal rate of TOC of phenol over 20%N-BiOCl0.5I0.5

    C0—Initial solution concentration; Ct—the solution concentration at t; K—apparent rate constant; TOC0—total organic carbon of initial solution; TOC—total organic carbon of solution at t

    图  8  20%N-BiOCl0.5I0.5: (a)·O2测试,(b)·OH测试,(c)h+测试

    Figure  8.  20%N-BiOCl0.5I0.5: (a)ESR spectrum of DMPO -·O2, (b) ESR spectrum of DMPO - ·OH, (c) ESR spectrum of DMRO- h+

    图  9  (a) N-C3N4理论模型,(b) N-C3N4的功函数,(c) BiOCl0.5I0.5的功函数,(d,e) 20%N-BiOCl0.5I0.5三维电子密度差图(其中蓝色(椭圆形)和黄色(矩形框)区域代表电子耗尽和累积)

    Figure  9.  (a) N-C3N4 theoretical model, (b) N-C3N4 of work function calculation, (c) BiOCl0.5I0.5 of work function calculation, (d,e) three-dimensional charge density differences of 20% N-BiOCl0.5I0.5 (where the blue (oval) and yellow (rectangular) areas represent electron depletion and accumulation)

    图  10  光催化降解机制图:(a) II型异质结,(b) S型异质结

    Figure  10.  Photocatalytic degradation mechanism: (a) type II heterojunction, (b) S-scheme heterojunction

  • [1] 申久英, 刘碧雯, 赵宇翔, 等. CuS-Bi2WO6/活性纳米碳纤维的制备及其光催化性能[J]. 复合材料学报, 2022, 39(3):1163-1172.

    SHEN Jiuying, LIU Biwen, ZHAO Yuxiang, et al. Preparation and photocatalytic properties CuS-Bi2WO6/carbon nanofibers composites[J]. Acta Materiae Compositae Sinica,2022,39(3):1163-1172(in Chinese).
    [2] 李燕, 杨旭光, 曹林林. Bi2S3-BiOCl/煤矸石复合光催化剂的制备及光催化性能[J]. 复合材料学报, 2017, 34(8):1847-1852.

    LI Yan, YANG Xuguang, CAO Linlin. Preparation and photocatalytic properties of Bi2S3-BiOCl/coal gangue composite photocatalysts[J]. Acta Materiae Compositae Sinica,2017,34(8):1847-1852(in Chinese).
    [3] MEI J, TAO Y, GAO C, et al. Photo-induced dye-sensitized BiPO4/BiOCl system for stably treating persistent organic pollutants[J]. Applied Catalysis B:Environmental,2021,285:119841. doi: 10.1016/j.apcatb.2020.119841
    [4] JIA T, WU J, JI Z H, et al. Surface defect engineering of Fe-doped Bi7O9I3 microflowers for ameliorating charge-carrier separation and molecular oxygen activation[J]. Applied Catalysis B:Environmental,2021,284:119727. doi: 10.1016/j.apcatb.2020.119727
    [5] CHEN M, BAI R N, JIN P, et al. A facile hydrothermal synthesis of few-layer oxygen-doped g-C3N4 with enhanced visible light-responsive photocatalytic activity[J]. Journal of Alloys and Compounds,2021,869:159292. doi: 10.1016/j.jallcom.2021.159292
    [6] WU S S, YU X, ZHANG J L, et al. Construction of BiOCl/CuBi2O4 S-scheme heterojunction with oxygen vacancy for enhanced photocatalytic diclofenac degradation and nitric oxide removal[J]. Chemical Engineering Journal,2021,411:133080.
    [7] FU J W, XU Q L, LOW J X, et al. Ultrathin 2 D/2 D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Applied Catalysis B:Environmental,2019,243:556-565. doi: 10.1016/j.apcatb.2018.11.011
    [8] ZHANG X, TIAN F Y, LAN X, et al. Building P-doped MoS2/g-C3N4 layered heterojunction with a dual-internal electric field for efficient photocatalytic sterilization[J]. Chemical Engineering Journal,2022,429:132588. doi: 10.1016/j.cej.2021.132588
    [9] CHEN M, GUO C S, HOU S, et al. A novel Z-scheme AgBr/P-g-C3N4 heterojunction photocatalyst: Excellent photocatalytic performance and photocatalytic mechanism for ephedrine degradation[J]. Applied Catalysis B:Environmental,2020,266:118614. doi: 10.1016/j.apcatb.2020.118614
    [10] GUO F R, CHEN J C, ZHAO J Z, et al. Z-scheme heterojunction g-C3N4@PDA/BiOBr with biomimetic polydopamine as electron transfer mediators for enhanced visible-light driven degradation of sulfamethoxazole[J]. Chemical Engineering Journal,2020,386:124367.
    [11] YANG Y J, BIAN Z Y. Oxygen doping through oxidation causes the main active substance in g-C3N4 photocatalysis to change from holes to singlet oxygen[J]. Science of the Total Environment,2021,753:141908. doi: 10.1016/j.scitotenv.2020.141908
    [12] GAO X M, GAO K L, LI X B, et al. Hybrid PDI/BiOCl heterojunction with enhanced interfacial charge transfer for a full-spectrum photocatalytic degradation of pollutants[J]. Catalysis Science & Technology,2020,10(2):372-381.
    [13] YANG Y Q, JI W Q, LI X Y, et al. Insights into the degradation mechanism of perfluorooctanoic acid under visible-light irradiation through fabricating flower-shaped Bi5O7I/ZnO n-n heterojunction microspheres[J]. Chemical Engineering Journal,2021,420:129934. doi: 10.1016/j.cej.2021.129934
    [14] 张家晶, 郑永杰, 荆涛, 等. 3 D花状 MoS2/O-g-C3N4 Z型异质结增强光催化剂降解 BPA[J]. 复合材料学报, 2022, 39(12):1-14.

    ZHANG J J, ZHENG Y J, JING T, et al. 3 D flower-shaped MoS2/O-g-C3N4 Z-type heterojunction enhances the photocatalyst degradation of BPA[J]. Acta Materiae Compositae Sinica,2022,39(12):1-14(in Chinese).
    [15] LI X F, ZHANG J F, HUO Y, et al. Two-dimensional sulfur- and chlorine-codoped g-C3N4/CdSe-amine heterostructures nanocomposite with effective interfacial charge transfer and mechanism insight[J]. Applied Catalysis B:Environmental,2021,280:133790.
    [16] ZHANG X L, YUAN N, LI Y, et al. Fabrication of new MIL-53(Fe)@TiO2 visible-light responsive adsorptive photocatalysts for efficient elimination of tetracycline[J]. Chemical Engineering Journal,2022,428:131077. doi: 10.1016/j.cej.2021.131077
    [17] ZHU B C, ZHANG J F, JIANG C J, et al. First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst[J]. Applied Catalysis B:Environmental,2017,207:27-34. doi: 10.1016/j.apcatb.2017.02.020
    [18] 刘权锋, 彭炜东, 钟承韡, 等. g-C3N4-Ag/SiO2复合材料光催化降解甲醛的应用[J]. 复合材料学报, 2022, 39(2):628-636.

    LIU Quanfeng, PENG Weidong, ZHONG Chengwei, et al. Application of photocatalytic degradation of formaldehyde by g-C3N4-Ag/SiO2 heterostructure composites[J]. Acta Materiae Compositae Sinica,2022,39(2):628-636(in Chinese).
    [19] HU J D, CHEN D Y, MO Z, et al. Z-scheme 2 D/2 D heterojunction of black phosphorus/monolayer Bi2WO6 nanosheets with enhanced photocatalytic activities[J]. Angewandte Chemie International Edition in English,2019,58(7):2073-2077. doi: 10.1002/anie.201813417
    [20] SONG N N, ZHANG S Y, ZHONG S, et al. A direct Z-scheme polypyrrole/Bi2WO6 nanoparticles with boosted photogenerated charge separation for photocatalytic reduction of Cr(VI): Characteristics, performance, and mechanisms[J]. Journal of Cleaner Production,2022,337:130577. doi: 10.1016/j.jclepro.2022.130577
    [21] 孙翼飞, 余飞, 袁欢, 等. 具有优异光激发 NO2气敏性能和MB光催化降解效率的 ZnO-MoS2纳米复合材料[J]. 复合材料学报, 2023, 40(0):1-13.

    SUN Y F, YU F, YUAN H, et al. ZnO-MoS2 nano-composites with excellent light-activated NO2 gas sensitivity and MB photocatalytic degradation efficiency[J]. Acta Materiae Compositae Sinica,2023,40(0):1-13(in Chinese).
    [22] 王晓爽, 李育珍, 易思远, 等. Bi2MoS2O4改性 g-C3N4光催化降解罗丹明 B[J]. 复合材料学报, 2022, 39(8):3845-3851.

    WANG Xiaoshuang, LI Yuzhen, YI Siyuan, et al. Bi2MoS2O4 modified g-C3N4 photocatalytic degradation of Rhodamine B[J]. Acta Materiae Compositae Sinica,2022,39(8):3845-3851(in Chinese).
  • 加载中
计量
  • 文章访问数:  213
  • HTML全文浏览量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-17
  • 修回日期:  2022-11-20
  • 录用日期:  2022-11-26
  • 网络出版日期:  2022-12-16

目录

    /

    返回文章
    返回