留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内电场增强S型异质结N-C3N4/BiOClxI1−x的制备及其光催化性能

徐凯旋 亢玉龙 高晓明 贺红斌 袁中强 胡亚楠

徐凯旋, 亢玉龙, 高晓明, 等. 内电场增强S型异质结N-C3N4/BiOClxI1−x的制备及其光催化性能[J]. 复合材料学报, 2023, 40(9): 5134-5144. doi: 10.13801/j.cnki.fhclxb.20221209.002
引用本文: 徐凯旋, 亢玉龙, 高晓明, 等. 内电场增强S型异质结N-C3N4/BiOClxI1−x的制备及其光催化性能[J]. 复合材料学报, 2023, 40(9): 5134-5144. doi: 10.13801/j.cnki.fhclxb.20221209.002
XU Kaixuan, KANG Yulong, GAO Xiaoming, et al. Preparation of S-type heterojunction N-C3N4/BiOClxI1−x with internal electric field and enhanced photocatalytic properties[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5134-5144. doi: 10.13801/j.cnki.fhclxb.20221209.002
Citation: XU Kaixuan, KANG Yulong, GAO Xiaoming, et al. Preparation of S-type heterojunction N-C3N4/BiOClxI1−x with internal electric field and enhanced photocatalytic properties[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5134-5144. doi: 10.13801/j.cnki.fhclxb.20221209.002

内电场增强S型异质结N-C3N4/BiOClxI1−x的制备及其光催化性能

doi: 10.13801/j.cnki.fhclxb.20221209.002
基金项目: 陕西省自然科学基金(2022 QFY07-03)
详细信息
    通讯作者:

    高晓明,博士,教授,硕士生导师,研究方向为光催化 E-mail:ydgaoxm@126.com

  • 中图分类号: X75;TB332

Preparation of S-type heterojunction N-C3N4/BiOClxI1−x with internal electric field and enhanced photocatalytic properties

Funds: Natural Science Foundation of Shaanxi Province (2022 QFY07-03)
  • 摘要: 采用一步水热法使固溶体BiOClxI1−x静电自组装在N掺杂的氮化碳(N-C3N4)表面,制备了N-C3N4/BiOClxI1−x S型异质结。通过XRD、XPS、SEM、TEM、FTIR、UV-Vis等技术对样品的晶型、形貌、结构、元素组成、表面官能团、光学性质等进行了表征,并考察了N-C3N4/BiOClxI1−x光催化氧化有机污染物与还原Cr(VI)的活性。结果表明,N-C3N4/BiOClxI1−x具有强的光吸收,在N-C3N4与BiOClxI1−x界面处形成的内电场抑制了电子-空穴对的复合。在可见光照射下,20%N-BiOCl0.5I0.5呈现出优异的光催化活性,2.5 h内苯酚的降解率达到98.53%;1 h内Cr(VI)的还原率达到99.11%。20%N-BiOCl0.5I0.5在5次循环后表现出良好的稳定性。3 h内20%N-BiOCl0.5I0.5可见光降解苯酚的总有机碳(TOC)去除率为80.21%。结合捕获实验、ESR、DFT计算等表明,N-C3N4/BiOClxI1−x活性归因于S型异质结的形成、N-C3N4和BiOClxI1−x之间的内部电场及能带弯曲和库仑力的存在,加速了光生载流子的空间分离和有序电子流。

     

  • 图  1  (a) BiOClxI1−x的XRD图谱;(b) BiOClxI1−x在2θ=25°~37°的XRD图谱;(c) N-C3N4/BiOClxI1−x的XRD图谱;(d) 样品的FTIR图谱;(e) N-C3N4的Zeta谱图;(f) BiOCl0.5I0.5的Zeta谱图

    Figure  1.  (a) XRD patterns of BiOClxI1−x; (b) XRD patterns of BiOClxI1−x at 2θ=25°-37°; (c) XRD patterns of N-C3N4/BiOClxI1−x; (d) FTIR spectra of the as-prepared samples; (e) Zeta spectra of N-C3N4; (f) Zeta spectra of BiOCl0.5I0.5

    图  2  BiOCl0.5I0.5和20%N-BiOCl0.5I0.5的HR-XPS图谱

    Figure  2.  HR-XPS spectra of BiOCl0.5I0.5 and 20%N-BiOCl0.5I0.5

    图  3  BiOI (a)、BiOCl0.5I0.5 (b) 的SEM图像;(c) 20%N-BiOCl0.5I0.5局部放大图像

    Figure  3.  SEM images of BiOI (a), BiOCl0.5I0.5 (b); (c) Partial enlargement of 20%N-BiOCl0.5I0.5

    d—Thickness of nanosheets

    图  4  ((a)~(c)) 20%N-BiOCl0.5I0.5的TEM图像;((d)~(j)) 20%N-BiOCl0.5I0.5的EDS图谱、Bi、Cl、O、I、N、C图谱

    Figure  4.  ((a)-(c)) TEM images of 20%N-BiOCl0.5I0.5; ((d)-(j)) EDS, Bi, Cl, O, I, N and C mapping of 20%N-BiOCl0.5I0.5

    图  5  (a) N-BiOClxI1−x的UV-Vis漫反射图谱;(b) BiOClxI1−x的带隙

    Figure  5.  (a) UV-Vis DRS diffuse reflection map of N-BiOClxI1−x; (b) Band gap of N-BiOClxI1−x

    图  6  N-C3N4 (a) 和BiOCl0.5I0.5 (b) 的Mott-Schottky曲线;(c) 能带结构

    Figure  6.  Mott-Schottky curves N-C3N4 (a) and BiOCl0.5I0.5 (b); (c) Band structure

    C−2—Interfacial capacitance

    图  7  (a) 苯酚的光催化降解曲线;((b), (c))光催化还原六价铬曲线和表观速率常数;(d) 20%N-BiOCl0.5I0.5循环降解苯酚稳定性测试;(e) 20%N-BiOCl0.5I0.5在5个循环前后的XRD图谱;(f) 20%N-BiOCl0.5I0.5可见光降解苯酚的TOC去除率

    Figure  7.  (a) Photocatalytic degradation curve of phenol; ((b), (c)) Photocatalytic reduction curve and apparent rate constant of Cr(Ⅵ); (d) Recycling use of 20%N-BiOCl0.5I0.5 for phenol degradation; (e) XRD patterns of before and after five cycles of 20%N-BiOCl0.5I0.5 for for phenol degradation; (f) Removal rate of TOC of phenol over 20%N-BiOCl0.5I0.5

    C0—Initial solution concentration; Ct—Solution concentration at time t; K—Apparent rate constant; TOC0—Total organic carbon of initial solution; TOC—Total organic carbon of solution at time t

    图  8  20%N-BiOCl0.5I0.5的•O2测试 (a)、•OH测试 (b)、h+测试 (c)

    Figure  8.  ESR spectra of •O2(a), •OH(b), h+ (c) of 20%N-BiOCl0.5I0.5

    图  9  (a) N-C3N4理论模型;(b) N-C3N4的功函数;(c) BiOCl0.5I0.5的功函数;((d)~(e)) 20%N-BiOCl0.5I0.5三维电子密度差图

    Figure  9.  (a) N-C3N4 theoretical model; (b) N-C3N4 of work function calculation; (c) BiOCl0.5I0.5 of work function calculation; ((d)-(e)) Three-dimensional charge density differences of 20%N-BiOCl0.5I0.5

    Φ—Work function

    图  10  光催化降解机制图:(a) II型异质结;(b) S型异质结

    Figure  10.  Photocatalytic degradation mechanism: (a) Type II heterojunction; (b) S-scheme heterojunction

    NHE—Normal hydrogen electrode; IEF—Inerenal Electric Field; EVAC—Vacuum level; Ef—Flat band potential; Eg—Energy band

  • [1] 申久英, 刘碧雯, 赵宇翔, 等. CuS-Bi2WO6/活性纳米碳纤维的制备及其光催化性能[J]. 复合材料学报, 2022, 39(3):1163-1172.

    SHEN Jiuying, LIU Biwen, ZHAO Yuxiang, et al. Preparation and photocatalytic properties CuS-Bi2WO6/carbon nanofibers composites[J]. Acta Materiae Compositae Sinica,2022,39(3):1163-1172(in Chinese).
    [2] 李燕, 杨旭光, 曹林林. Bi2S3-BiOCl/煤矸石复合光催化剂的制备及光催化性能[J]. 复合材料学报, 2017, 34(8):1847-1852.

    LI Yan, YANG Xuguang, CAO Linlin. Preparation and photocatalytic properties of Bi2S3-BiOCl/coal gangue compo-site photocatalysts[J]. Acta Materiae Compositae Sinica,2017,34(8):1847-1852(in Chinese).
    [3] MEI J, TAO Y, GAO C, et al. Photo-induced dye-sensitized BiPO4/BiOCl system for stably treating persistent organic pollutants[J]. Applied Catalysis B: Environmental,2021,285:119841. doi: 10.1016/j.apcatb.2020.119841
    [4] JIA T, WU J, JI Z H, et al. Surface defect engineering of Fe-doped Bi7O9I3 microflowers for ameliorating charge-carrier separation and molecular oxygen activation[J]. Applied Catalysis B: Environmental,2021,284:119727. doi: 10.1016/j.apcatb.2020.119727
    [5] CHEN M, BAI R N, JIN P, et al. A facile hydrothermal synthesis of few-layer oxygen-doped g-C3N4 with enhanced visible light-responsive photocatalytic activity[J]. Journal of Alloys and Compounds,2021,869:159292. doi: 10.1016/j.jallcom.2021.159292
    [6] WU S S, YU X, ZHANG J L, et al. Construction of BiOCl/CuBi2O4 S-scheme heterojunction with oxygen vacancy for enhanced photocatalytic diclofenac degradation and nitric oxide removal[J]. Chemical Engineering Journal,2021,411:128555.
    [7] FU J W, XU Q L, LOW J X, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Applied Catalysis B: Environmental,2019,243:556-565. doi: 10.1016/j.apcatb.2018.11.011
    [8] ZHANG X, TIAN F Y, LAN X, et al. Building P-doped MoS2/g-C3N4 layered heterojunction with a dual-internal electric field for efficient photocatalytic sterilization[J]. Chemical Engineering Journal,2022,429:132588. doi: 10.1016/j.cej.2021.132588
    [9] CHEN M, GUO C S, HOU S, et al. A novel Z-scheme AgBr/P-g-C3N4 heterojunction photocatalyst: Excellent photocatalytic performance and photocatalytic mechanism for ephedrine degradation[J]. Applied Catalysis B: Environmental,2020,266:118614. doi: 10.1016/j.apcatb.2020.118614
    [10] GUO F R, CHEN J C, ZHAO J Z, et al. Z-scheme heterojunction g-C3N4@PDA/BiOBr with biomimetic polydopamine as electron transfer mediators for enhanced visible-light driven degradation of sulfamethoxazole[J]. Chemical Engineering Journal,2020,386:124014.
    [11] YANG Y J, BIAN Z Y. Oxygen doping through oxidation causes the main active substance in g-C3N4 photocatalysis to change from holes to singlet oxygen[J]. Science of the Total Environment,2021,753:141908. doi: 10.1016/j.scitotenv.2020.141908
    [12] GAO X M, GAO K L, LI X B, et al. Hybrid PDI/BiOCl heterojunction with enhanced interfacial charge transfer for a full-spectrum photocatalytic degradation of pollutants[J]. Catalysis Science & Technology,2020,10(2):372-381.
    [13] YANG Y Q, JI W Q, LI X Y, et al. Insights into the degradation mechanism of perfluorooctanoic acid under visible-light irradiation through fabricating flower-shaped Bi5O7I/ZnO n-n heterojunction microspheres[J]. Chemi-cal Engineering Journal,2021,420:129934. doi: 10.1016/j.cej.2021.129934
    [14] 张家晶, 郑永杰, 荆涛, 等. 3D花状 MoS2/O-g-C3N4 Z型异质结增强光催化剂降解双酚A[J]. 复合材料学报, 2022, 39(12):5778-5791.

    ZHANG Jiajing, ZHENG Yongjie, JING Tao, et al. 3D flower-shaped MoS2/O-g-C3N4 Z-type heterojunction enhances the photocatalyst degradation of BPA[J]. Acta Materiae Compositae Sinica,2022,39(12):5778-5791(in Chinese).
    [15] LI X F, ZHANG J F, HUO Y, et al. Two-dimensional sulfur- and chlorine-codoped g-C3N4/CdSe-amine heterostructures nanocomposite with effective interfacial charge transfer and mechanism insight[J]. Applied Catalysis B: Environmental,2021,280:119452.
    [16] ZHANG X L, YUAN N, LI Y, et al. Fabrication of new MIL-53(Fe)@TiO2 visible-light responsive adsorptive photocatalysts for efficient elimination of tetracycline[J]. Chemical Engineering Journal,2022,428:131077. doi: 10.1016/j.cej.2021.131077
    [17] ZHU B C, ZHANG J F, JIANG C J, et al. First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst[J]. Applied Catalysis B: Environmental,2017,207:27-34. doi: 10.1016/j.apcatb.2017.02.020
    [18] 刘权锋, 彭炜东, 钟承韡, 等. g-C3N4-Ag/SiO2复合材料光催化降解甲醛的应用[J]. 复合材料学报, 2022, 39(2):628-636.

    LIU Quanfeng, PENG Weidong, ZHONG Chengwei, et al. Application of photocatalytic degradation of formaldehyde by g-C3N4-Ag/SiO2 heterostructure composites[J]. Acta Materiae Compositae Sinica,2022,39(2):628-636(in Chinese).
    [19] HU J D, CHEN D Y, MO Z, et al. Z-scheme 2D/2D heterojunction of black phosphorus/monolayer Bi2WO6 nanosheets with enhanced photocatalytic activities[J]. Angewandte Chemie International Edition,2019,58(7):2073-2077. doi: 10.1002/anie.201813417
    [20] SONG N N, ZHANG S Y, ZHONG S, et al. A direct Z-scheme polypyrrole/Bi2WO6 nanoparticles with boosted photogenerated charge separation for photocatalytic reduction of Cr(VI): Characteristics, performance, and mechanisms[J]. Journal of Cleaner Production,2022,337:130577. doi: 10.1016/j.jclepro.2022.130577
    [21] 孙翼飞, 余飞, 袁欢, 等. 具有优异光激发 NO2气敏性能和MB光催化降解效率的 ZnO-MoS2纳米复合材料[J]. 复合材料学报, 2023, 40(6):3428-3440.

    SUN Yifei, YU Fei, YUAN Huan, et al. ZnO-MoS2 nano-composites with excellent light-activated NO2 gas sensitivity and MB photocatalytic degradation efficiency[J]. Acta Materiae Compositae Sinica,2023,40(6):3428-3440(in Chinese).
  • 加载中
图(10)
计量
  • 文章访问数:  619
  • HTML全文浏览量:  379
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-17
  • 修回日期:  2022-11-20
  • 录用日期:  2022-11-26
  • 网络出版日期:  2022-12-12
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回