留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料层合板剪切稳定性试验及强度预测

杨钧超 陈向明 邹鹏 王喆

杨钧超, 陈向明, 邹鹏, 等. 复合材料层合板剪切稳定性试验及强度预测[J]. 复合材料学报, 2022, 40(0): 1-11
引用本文: 杨钧超, 陈向明, 邹鹏, 等. 复合材料层合板剪切稳定性试验及强度预测[J]. 复合材料学报, 2022, 40(0): 1-11
Junchao YANG, Xiangming CHEN, Peng ZOU, Zhe WANG. Shear stability test and strength prediction of composite laminates[J]. Acta Materiae Compositae Sinica.
Citation: Junchao YANG, Xiangming CHEN, Peng ZOU, Zhe WANG. Shear stability test and strength prediction of composite laminates[J]. Acta Materiae Compositae Sinica.

复合材料层合板剪切稳定性试验及强度预测

基金项目: 国家重点研发计划(2019 YFA0706800);国家自然科学基金(52005458);航空科学基金(2020 Z055023002)
详细信息
    通讯作者:

    陈向明,博士,高级工程师,研究方向为复合材料结构强度 E-mail: asrichenxm@avic.com

  • 中图分类号: V257;TB330.1

Shear stability test and strength prediction of composite laminates

Funds: National Key R&D Program of China (2019 YFA0706800); National Natural Science Foundation of China(52005458); Aviation Science Foundation of China (2020 Z055023002)
  • 摘要: 对无损伤及含冲击损伤的复合材料层合板进行了剪切稳定性试验,基于数字图像相关方法(Digital image correlation,DIC)对层合板屈曲后屈曲行为进行了实时测量。试验结果表明:引入冲击损伤后,复合材料层合板剪切屈曲波形、屈曲载荷无明显变化,失效模式转变,承载能力下降了9.69%。随后,基于断裂面失效理论,建立了考虑剪切非线性效应的复合材料渐进损伤失效模型,并对复合材料层合板剪切失效过程进行了模拟。模型采用软化夹杂法将冲击损伤等效简化,直接将损伤区的几何边界信息写入材料模型中,不需要对冲击损伤区进行切割,从而保证了整体网格质量。与试验结果对比发现:模型考虑剪切非线性对屈曲载荷预测无明显影响,对后屈曲承载能力的预测精度影响较大,不考虑剪切非线性效应时的误差可达20%以上;软化夹杂法可以有效地模拟冲击损伤,预测的含冲击损伤的复合材料层合板的屈曲载荷、破坏载荷误差分别为−3.17%、−1.27%。

     

  • 图  1  CCF300/BA3202复合材料层合板尺寸

    Figure  1.  Dimensions of CCF300/BA3202 composite laminates

    图  2  T4试件冲击支持方式及分层尺寸

    Figure  2.  Impact support mode and delamination size of T4 specimen

    图  3  无损伤试件(T1~T3)应变片分布及编号

    Figure  3.  Strain gauges distributions and numbers of undamaged specimens(T1~T3)

    图  4  CCF300/BA3202复合材料层合板剪切试验方法

    Figure  4.  Shear test method for CCF300/BA3202 composite laminates

    图  5  基体潜在断裂面上的应力分量[24]

    Figure  5.  Stress components on potential fracture surface of matrix[24]

    $ {\sigma _1} $, $ {\sigma _2} $, $ {\sigma _3} $, $ {\tau _{12}} $, $ {\tau _{13}} $, $ {\tau _{23}} $, $ {\tau _{21}} $, $ {\tau _{31}} $, $ {\tau _{32}} $—Stress components in the material's principal axis coordinate system; $ {\theta _{{\text{fp}}}} $—Angle of the potential fracture surface of matrix; $ {\sigma _{\text{n}}},\;{\tau _{{\text{nt}}}},\;\;{\tau _{{\text{nl}}}} $—Stress components on potential fracture surface of matrix

    图  6  CCF300/BA3202复合材料的剪切非线性行为

    Figure  6.  Shear nonlinear behavior of CCF300/BA3202

    图  7  CCF300/BA3202复材层板剪切试验有限元模型

    Figure  7.  Finite element model for shear test of CCF300/BA3202 composite laminates

    MPC—Multi-point constraints

    图  8  T4试件等效冲击损伤区域

    Figure  8.  Equivalent impact damage area of T4 specimen

    F4—Impact damage field variable

    图  9  T1试件载荷-应变曲线

    Figure  9.  Load-strain curve of T1 specimen

    图  10  无损伤的T1试件屈曲及失效时的面外位移云图

    Figure  10.  Out-of-plane displacement cloud diagram of undamaged T1 specimen during buckling and failure

    W—Out of plane displacement

    图  11  含冲击损伤的T4试件屈曲及失效时的面外位移云图

    Figure  11.  Out-of-plane displacement cloud diagram of T4 specimen with impact damage during buckling and failure

    图  12  几何缺陷因子和剪切非线性对CCF300/BA3202复材层板屈曲载荷破坏载荷的影响

    Figure  12.  Effects of geometric defect factor and shear nonlinearity on buckling load and failure load of CCF300/BA3202 composite laminates

    图  13  刚度折减系数对CCF300/BA3202复材层板破坏载荷的影响

    Figure  13.  Effects of stiffness reduction factor on failure load of CCF300/BA3202 composite laminates

    图  14  T4试件仿真的屈曲模态

    Figure  14.  Simulated buckling mode of T4 specimen

    U3—Out of plane displacement

    图  15  T4试件仿真的失效模式

    Figure  15.  Simulated failure mode of T4 specimen

    F1—Fiber damage field variable; F2—Matrix damage field variable

    图  16  T4试件预测的载荷-位移曲线

    Figure  16.  Predicted load-displacement curve of T4 specimen

    图  17  T4试件纤维间损伤扩展过程

    Figure  17.  Inter-fiber failure propagation process of T4 specimen

    P—Load; U—Displacement

    表  1  CCF300/BA3202碳纤维增强环氧树脂复合材料性能参数

    Table  1.   Material properties of CCF300/BA3202 carbon fiber reinforced epoxy composite

    E1/GPaE2/GPaG12/GPaν12
    1188.984.210.306
    XT/MPaXC/MPaYT/MPaYC/MPa
    1835129682.5240
    SL/MPaGIC/(N·mm−1)GIIC/(N·mm−1)
    1660.7441.90
    Notes:$ {E_1} $—Longitudinal elastic modulus; $ {E_2} $—Ransverse elastic modulus; $ {G_{12}} $—Shear modulus $ {\nu _{{\text{12}}}} $—Poisson's ratio; $ {X_{\text{T}}} $—Longitudinal tensile strength; $ {X_{\text{C}}} $—Longitudinal compressive strength; $ {Y_{\text{T}}} $—Transverse tensile strength; $ {Y_{\text{C}}} $—Transverse compressive strength; $ {S_{\text{L}}} $—Shear strength; GIC—Mode I fracture toughness ; GIIC—Mode II fracture toughness.
    下载: 导出CSV

    表  2  材料性能退化方案

    Table  2.   Material performance degradation scheme

    Fail modeNo damage zoneImpact damage zone
    None-$ \begin{gathered} {E_1} \to \eta {E_1} \hfill \\ {E_2} \to \eta {E_2} \hfill \\ G_{12}^{{\text{eq}}} \to \eta G_{12}^{{\text{eq}}} \hfill \\ \end{gathered} $
    Fiber
    failure
    $ \begin{gathered} {E_1} \to (1 - {d_{{\text{FF}}}}){E_1} \hfill \\ {E_2} \to (1 - {d_{{\text{FF}}}}){E_2} \hfill \\ G_{12}^{{\text{eq}}} \to (1 - {d_{{\text{FF}}}})G_{12}^{{\text{eq}}} \hfill \\ {\nu _{12}} \to (1 - {d_{{\text{FF}}}}){\nu _{12}} \hfill \\ \end{gathered} $$ \begin{gathered} {E_1} \to (1 - {d_{{\text{FF}}}})\eta {E_1} \hfill \\ {E_2} \to (1 - {d_{{\text{FF}}}})\eta {E_2} \hfill \\ G_{12}^{{\text{eq}}} \to (1 - {d_{{\text{FF}}}})\eta G_{12}^{{\text{eq}}} \hfill \\ {\nu _{12}} \to (1 - {d_{{\text{FF}}}}){\nu _{12}} \hfill \\ \end{gathered} $
    Inter-fiber
    failure
    $ \begin{gathered} {E_2} \to (1 - {d_{{\text{IFF}}}}){E_2} \hfill \\ G_{12}^{{\text{eq}}} \to (1 - {d_{{\text{IFF}}}})G_{12}^{{\text{eq}}} \hfill \\ {\nu _{12}} \to (1 - {d_{{\text{IFF}}}}){\nu _{12}} \hfill \\ \end{gathered} $$ \begin{gathered} {E_2} \to (1 - {d_{{\text{IFF}}}})\eta {E_2} \hfill \\ G_{12}^{{\text{eq}}} \to (1 - {d_{{\text{IFF}}}})\eta G_{12}^{{\text{eq}}} \hfill \\ {\nu _{12}} \to (1 - {d_{{\text{IFF}}}}){\nu _{12}} \hfill \\ \end{gathered} $
    Notes:$ {E_1} $—Longitudinal elastic modulus; $ {E_2} $—Transverse elastic modulus; $ G_{12}^{{\text{eq}}} $—Equivalent shear modulus; $ {\nu _{{\text{12}}}} $—Poisson's ratio; η—Stiffness reduction factor; $ {d_{{\text{FF}}}} $—Fiber damage state variable; $ {d_{{\text{IFF}}}} $—Matrix damage state variable.
    下载: 导出CSV

    表  3  CCF300/BA3202复材层板剪切试验结果

    Table  3.   Shear test results of CCF300/BA3202 composite laminates

    NumberBuckling load/kNFracture load/kN
    TestAverageTestAverage
    T164.664.2153.5156.8
    T265.0156.2
    T363.1160.7
    T463.0141.6
    下载: 导出CSV
  • [1] 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1):1-10. doi: 10.3321/j.issn:1000-3851.2008.01.001

    DU Shanyi, GUAN Zhidong. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica,2008,25(1):1-10(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.001
    [2] STEVENS K A, RICCI R, DAVIES G. Buckling and post-buckling of composite structures[J]. Composites,1995,26(3):189-199. doi: 10.1016/0010-4361(95)91382-F
    [3] KUMAR N J, BABU P R, PANDU R. Investigations on buckling behaviour of laminated curved composite stiffened panels[J]. Applied Composite Materials,2014,21(2):359-376. doi: 10.1007/s10443-013-9337-4
    [4] DEGENHARDT R, CASTRO S G P, ARBELO M A, et al. Future structural stability design for composite space and airframe structures[J]. Thin-Walled Structures,2014,81(7):29-38.
    [5] GLISZCZYNSKI A, KUBIAK T. Progressive failure analysis of thin-walled composite columns subjected to uniaxial compression[J]. Composite Structures,2017,169:52-61. doi: 10.1016/j.compstruct.2016.10.029
    [6] GENG X, JI F, WANG J, et al. Experimental and numerical investigations of compression stability of stiffened composite panel with ply interleaving[J]. Journal of Composite Materials,2017,51(26):3647-3656. doi: 10.1177/0021998317692397
    [7] AKTERSKAIA M, JANSEN E, HALLETT S R, et al. Analysis of skin-stringer debonding in composite panels through a two-way global-local method[J]. Composite Structures,2018,202:1280-1294. doi: 10.1016/j.compstruct.2018.06.064
    [8] RAIMOND A, RICCIO A. Inter-laminar and intra-laminar damage evolution in composite panels with skin-stringer debonding under compression[J]. Composites Part B:Engineering,2016,94:139-151. doi: 10.1016/j.compositesb.2016.03.058
    [9] 谭翔飞, 何宇廷, 冯宇, 等. 航空复合材料加筋板剪切稳定性及后屈曲承载性能[J]. 复合材料学报, 2018, 35(2):320-331.

    TAN Xiangfei, HE Yuting, FEND Yu, et al. Stability and post-buckling carrying capacity of aeronautic composite stiffened panel under shear loading[J]. Acta Materiae Compositae Sinica,2018,35(2):320-331(in Chinese).
    [10] 汪厚冰, 林国伟, 韩雪冰, 等. 复合材料帽形加筋壁板剪切屈曲性能[J]. 航空学报, 2019, 40(8):222889-222889.

    WANG Houbing, LIN Guowei, HAN Xuebing, et al. Shear buckling performance of composite hat-stiffened panels[J]. Acta Aeronautica et Astronautica Sinica,2019,40(8):222889-222889(in Chinese).
    [11] 李真, 程立平, 李卫平. 复合材料机身帽型长桁加筋壁板剪切失稳及张力场计算[J]. 科学技术与工程, 2021, 21(23):10080-10085. doi: 10.3969/j.issn.1671-1815.2021.23.056

    LI Zhen, CHENG Liping, LI Weiping. Calculation of shear instability and diagonal tension of composite fuselage hat-stringer panel[J]. Science Technology and Engineering,2021,21(23):10080-10085(in Chinese). doi: 10.3969/j.issn.1671-1815.2021.23.056
    [12] 罗靓, 沈真, 杨胜春. 炭纤维增强树脂基复合材料层合板低速冲击性能实验研究[J]. 复合材料学报, 2008, 25(3):20-24. doi: 10.3321/j.issn:1000-3851.2008.03.004

    LUO L, SHEN Z, YANG S C. Experimental study on low-velocity impact performance of carbon fiber reinforced composite laminates[J]. Acta Materiae Compositae Sinica,2008,25(3):20-24(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.03.004
    [13] CAPUTO F, LUCA A D, SEPE R. Numerical study of the structural behaviour of impacted composite laminates subjected to compression load[J]. Composites Part B Engineering,2015,79:456-465. doi: 10.1016/j.compositesb.2015.05.007
    [14] FARDIN E, CHRISTOS K. An efficient approach to determine compression after impact strength of quasi-isotropic composite laminates[J]. Composites Science and Technology,2014,98:28-35. doi: 10.1016/j.compscitech.2014.04.015
    [15] DEBSKI H, ROZYLO P, GLISZCZYNSKI A, et al. Numerical models for buckling, postbuckling and failure analysis of pre-damaged thin-walled composite struts subjected to uniform compression[J]. Thin-Walled Structures,2019,139:53-65. doi: 10.1016/j.tws.2019.02.030
    [16] LI N, CHEN P H. Prediction of Compression-After-Edge-Impact (CAEI) behaviour in composite panel stiffened with I-shaped stiffeners[J]. Composites Part B,2017,110:402-419. doi: 10.1016/j.compositesb.2016.11.043
    [17] SEBASTIAN C, PATTERSON E A. Calibration of a digital image correlation system[J]. Experimental Techniques,2015,39(1):21-29. doi: 10.1111/ext.12005
    [18] American Society for Testing and Materials. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039—2017[S]. West Conshohocken: ASTM, 2017.
    [19] American Society for Testing and Materials. Standard test method for compressive properties of polymer matrix composite materials using a combined loading compression (CLC) test fixture: ASTM D6641—2016[S]. West Conshohocken: ASTM, 2016.
    [20] American Society for Testing and Materials. Standard test method for in-plane shear response of polymer matrix composite materials by tensile test of a ±45° laminate: ASTM D3518—2018[S]. West Conshohocken: ASTM, 2018.
    [21] American Society for Testing and Materials. Determination of the mode Ⅰ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528—2013[S]. West Conshohocken: ASTM, 2013.
    [22] American Society for Testing and Materials. Determination of the mode Ⅱ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D7905—2019[S]. West Conshohocken: ASTM, 2019.
    [23] HASHIN Z. Fatigue failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics,1980,47:329-334. doi: 10.1115/1.3153664
    [24] LI N, GU J F, CHEN P H. Fracture plane based failure criteria for fibre-reinforced composites under three-dimensional stress state[J]. Composite Structures,2018,204:466-474. doi: 10.1016/j.compstruct.2018.07.103
    [25] PUCK A, SCHURMANN H. Failure analysis of CFRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology,2002,62(12):1633-1662.
    [26] CHIRMAIER F J, WEILAND J, KÄRGER L, et al. A new efficient and reliable algorithm to determine the fracture angle for Puck’ s 3 D matrix failure criterion for UD composites[J]. Composites Science and Technology,2014,100:19-25. doi: 10.1016/j.compscitech.2014.05.033
    [27] 杨凤祥, 陈静芬, 陈善富, 等. 基于剪切非线性三维损伤本构模型的复合材料层合板失效强度预测[J]. 复合材料学报, 2020, 37(9):2207-2222.

    YANG Fengxiang, CHEN Jingfen, CHEN Shanfu, et al. Failure strength prediction of composite laminates using three-dimensional damage constitutive model with nonlinear shear effects[J]. Acta Materiae Compositae Sinica,2020,37(9):2207-2222(in Chinese).
    [28] LINDE P, DE BOER H. Modelling of inter-rivet buckling of hybrid composites[J]. Composite Structures,2006,73:221-228. doi: 10.1016/j.compstruct.2005.11.062
    [29] OUYANG Tian, BAO Rui, SUN Wei, et al. A fast and efficient numerical prediction of compression after impact (CAI) strength of composite laminates and structures[J]. Thin-Walled Structures,2020,148:106588. doi: 10.1016/j.tws.2019.106588
    [30] LIU Decheng, CAO Dongfeng, HU Haixiao, et al. Numerical study on failure behavior of open-hole composite laminates based on LaRC criterion and extended finite element method[J]. Journal of Mechanical Science and Technology,2021,35(3):1037-1047. doi: 10.1007/s12206-021-0217-9
    [31] REITINGER R, RAMM E. Buckling and imperfection sensitivity in the optimization of shell structures[J]. Thin-Walled Structures,1995,23:159-177. doi: 10.1016/0263-8231(95)00010-B
  • 加载中
计量
  • 文章访问数:  60
  • HTML全文浏览量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 录用日期:  2022-05-20
  • 修回日期:  2022-05-10
  • 网络出版日期:  2022-06-09

目录

    /

    返回文章
    返回