留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚丙烯腈纳米纤维膜对聚对苯撑苯并双噁唑织物增强复合材料层间剪切性能的影响

陆瑶 赵玉芬 田荟霞 李笑宇 高兴忠 樊威

陆瑶, 赵玉芬, 田荟霞, 等. 聚丙烯腈纳米纤维膜对聚对苯撑苯并双噁唑织物增强复合材料层间剪切性能的影响[J]. 复合材料学报, 2022, 39(12): 6130-6138. doi: 10.13801/j.cnki.fhclxb.20211116.005
引用本文: 陆瑶, 赵玉芬, 田荟霞, 等. 聚丙烯腈纳米纤维膜对聚对苯撑苯并双噁唑织物增强复合材料层间剪切性能的影响[J]. 复合材料学报, 2022, 39(12): 6130-6138. doi: 10.13801/j.cnki.fhclxb.20211116.005
LU Yao, ZHAO Yufen, TIAN Huixia, et al. Effect of polyacrylonitrile nanofiber membrane on interlaminar shear properties of poly-p-phenylene benzobisoxazole fabric reinforced composites[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6130-6138. doi: 10.13801/j.cnki.fhclxb.20211116.005
Citation: LU Yao, ZHAO Yufen, TIAN Huixia, et al. Effect of polyacrylonitrile nanofiber membrane on interlaminar shear properties of poly-p-phenylene benzobisoxazole fabric reinforced composites[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6130-6138. doi: 10.13801/j.cnki.fhclxb.20211116.005

聚丙烯腈纳米纤维膜对聚对苯撑苯并双噁唑织物增强复合材料层间剪切性能的影响

doi: 10.13801/j.cnki.fhclxb.20211116.005
基金项目: 国家自然科学基金(52073224);纺织之光应用基础研究计划(J202110);超高温结构复合材料重点实验室基金(6142911200310);陕西省创新能力支撑计划(2020PT-043);陕西省自然科学基础研究计划(2021JQ-659);西安工程大学博士科研启动项目(BS202053)
详细信息
    通讯作者:

    樊威,博士,教授,硕士生导师,研究方向为三维纺织复合材料结构与性能、智能纤维与智能可穿戴、废旧纺织品回收利用及安全与防护用纺织品的开发 E-mail:fanwei@xpu.edu.cn

  • 中图分类号: TB332

Effect of polyacrylonitrile nanofiber membrane on interlaminar shear properties of poly-p-phenylene benzobisoxazole fabric reinforced composites

  • 摘要: 聚对苯撑苯并双噁唑(PBO)纤维表面粘结能力弱,其与树脂复合后界面强度低,影响复合材料力学性能。采用静电纺丝的方法在PBO平纹织物上覆一层聚丙烯腈(PAN)纳米纤维膜,再将其进行铺层固化得到复合材料,在PBO纤维与环氧树脂之间构成了梯度界面层结构,以提高复合材料界面强度。使用万能试验机对复合材料进行短梁剪切测试,通过改变纺丝电压来确定最佳的层间性能增强效果。采用原子力显微镜获得界面相对刚度图像探究界面增强机制。结果表明,在保证注射泵推速和收集辊转速不变的情况下,当纺丝电压为20 kV时,复合材料层间性能增强效果最明显。相较于纯PBO纤维增强复合材料,表面覆膜的PBO纤维增强复合材料的层间剪切强度提高了40.1%;梯度界面结构有助于应力从树脂基体向纤维增强体均匀地传递,提高复合材料力学性能。

     

  • 图  1  聚丙烯腈(PAN)纳米纤维/聚对苯撑苯并双噁唑(PBO)平纹织物预制体制备流程

    Figure  1.  Prefabrication and preparation process of polyacrylonitrile (PAN) nanofiber/poly-p-phenylene benzobisoxazole (PBO) plain fabric

    图  2  PAN纳米纤维/PBO平纹织物复合材料制备示意图

    Figure  2.  Preparation diagram of PAN nanofiber/PBO plain fabric composite

    图  3  PAN纳米纤维/PBO平纹织物复合材料与纯PBO平纹织物复合材料剪切测试结果:(a) 应力应变曲线;(b) 短梁剪切强度值

    Figure  3.  Shear test results of PAN nanofiber/PBO plain fabric composites and pure PBO plain fabric composites: (a) Stress-strain curve; (b) Shear strength value of short beam

    图  4  PAN纳米纤维/PBO平纹织物复合材料与纯PBO平纹织物复合材料损伤形貌图:((a)、(b)) 纯PBO;((c)、(d)) 15 kV;((e)、(f)) 20 kV;((g)、(h)) 25 kV

    Figure  4.  Damage morphologies of PAN nanofiber/PBO plain fabric composite and pure PBO plain fabric composite: ((a), (b)) Pure PBO; ((c), (d)) 15 kV; ((e), (f)) 20 kV; ((g), (h)) 25 kV

    图  5  不同纺丝电压下制备的PAN纳米纤维的直径统计:(a) 15 kV;(b) 20 kV;(c) 25 kV

    Figure  5.  Diameter statistics of PAN nanofibers prepared under different spinning voltages: (a) 15 kV; (b) 20 kV; (c) 25 kV

    图  6  超景深图像分析:(a) 纯树脂浇注体;(b) 为图6(a)局部放大图;(c) 含膜树脂浇注体;(d) 为图6(c)局部放大图

    Figure  6.  Super depth of field image analysis: (a) Pure resin castable; (b) Enlarged view of Fig.6(a); (c) Film containing resin castable; (d) Enlarged view for Fig.6(c)

    图  7  不同纱线横截面图像:(a) PBO纤维复合材料横截面示意图;(b) PBO纤维复合材料横截面形貌图;(c) PAN/PBO纤维包芯纱复合材料横截面示意图;(d) PAN/PBO纤维包芯纱复合材料横截面形貌图

    Figure  7.  Cross-sectional images of different yarns: (a) PBO fibers composite cross-sectional schematic diagram; (b) PBO fiber composite cross-sectional morphology diagram; (c) PAN/PBO fibers core-spun yarn composite cross-sectional schematic diagram; (d) PAN/PBO fibers core-spun yarn composite cross-sectional morphology diagram

    图  8  不同相复合材料界面微观结构测试分析相关图:((a)、(b)) PBO/环氧树脂两相复合材料的横截面相对刚度图像和横截面相对刚度分布曲线;((c)、(d)) PBO/PAN/环氧树脂复合材料的横截面相对刚度图像和横截面相对刚度分布曲线

    Figure  8.  Correlation diagrams for the test and analysis of the interface microstructure of different phase composites: ((a), (b)) Cross-sectional relative stiffness images and cross-sectional relative stiffness distribution curves for PBO/epoxy composite; ((c), (d)) Cross-sectional relative stiffness images and cross-sectional relative stiffness distribution curves for PBO/PAN/epoxy composite

  • [1] ZENG J, KONG H, DU X, et al. Surface modification of PBO fibers with 2, 2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane in supercritical carbon dioxide for enhancing inter-facial strength[J]. Materials Today Chemistry,2021,20:100426.
    [2] 胡大勇, 张涛, 金俊弘, 等. 羟基基团对PBO纤维表面性能及界面粘结性能的影响[J]. 复合材料学报, 2009, 26(3):78-83.

    HU Dayong, ZHANG Tao, JIN Junhong, et al. The effect of hydroxyl groups on the surface properties and interfacial bonding properties of PBO fibers[J]. Journal of Composite Materials,2009,26(3):78-83(in Chinese).
    [3] 郭玲, 赵亮, 胡娟, 等. 国产PBO纤维研究现状及发展趋势[J]. 高科技纤维与应用, 2014, 39(2):11-15, 38. doi: 10.3969/j.issn.1007-9815.2014.02.003

    GUO Ling, ZHAO Liang, HU Juan, et al. Research status and development trend of domestic PBO fiber[J]. Hi-Tech Fiber and Application,2014,39(2):11-15, 38(in Chinese). doi: 10.3969/j.issn.1007-9815.2014.02.003
    [4] 尚金龙, 李思海, 陈贻明. 纤维增强塑料在航空航天领域中的应用[J]. 塑料工业, 2019, 47(1):148-151. doi: 10.3969/j.issn.1005-5770.2019.01.032

    SHANG Jinlong, LI Sihai, CHEN Yiming. Application of fiber reinforced plastics in aerospace industry[J]. Plastics Industry,2019,47(1):148-151(in Chinese). doi: 10.3969/j.issn.1005-5770.2019.01.032
    [5] 张忠峰, 王克俭. 纤维增强防弹复合材料及应用[J]. 塑料包装, 2021, 31(2):51-55. doi: 10.3969/j.issn.1006-9828.2021.02.011

    ZHANG Zhongfeng, WANG Kejian. Fiber reinforced ballistic composite material and its application[J]. Plastic Packaging,2021,31(2):51-55(in Chinese). doi: 10.3969/j.issn.1006-9828.2021.02.011
    [6] WANG Q, CHEN P, JIA C, et al. Improvement of PBO fiber surface and PBO/PPESK composite interface properties with air DBD plasma treatment[J]. Surface & Interface Analysis,2012,44(5):548-553.
    [7] YU L, LU F, HUANG X H, et al. Facile Interface design strategy for improving the uvioresistant and self-healing properties of poly(p-phenylene benzobisoxazole) fibers[J]. ACS Applied Materials & Interfaces,2019,11(42):39292-39303.
    [8] YAN H, FENG S, ZHANG Z, et al. Improvement of interfacial adhesion between PBO fibers and cyanate ester matrix[J]. Journal of Applied Polymer Science,2014,131(9):742-751.
    [9] 陈平, 张承双, 王静, 等. PBO纤维及其表面改性技术的研究进展[J]. 纤维复合材料, 2006(4):50-54. doi: 10.3969/j.issn.1003-6423.2006.04.015

    CHEN Ping, ZHANG Chengshuang, WANG Jing, et al. Research progress of PBO fiber and its surface modification technology[J]. Fiber Composite Materials,2006(4):50-54(in Chinese). doi: 10.3969/j.issn.1003-6423.2006.04.015
    [10] FAN W, TIAN H X, WANG H, et al. Enhanced interfacial adhesion of aramid fiber III reinforced epoxy composites via low temperature plasma treatment[J]. Polymer Testing,2018,72:147-156.
    [11] ZHANG X, CHEN P, YU Q, et al. Effects of plasma-induced epoxy coatings on surface properties of Twaron fibers and improved adhesion with PPESK resins[J]. Vacuum,2013,97(Complete):1-8.
    [12] TANG L, ZHANG J, GU J. Random copolymer membrane coated PBO fibers with significantly improved interfacial adhesion for PBO fibers/cyanate ester composites[J]. Chinese Journal of Aeronautics,2020,34(2):659-668.
    [13] CHEN Y, XU D, ZENG Q, et al. Influence of DBD-grafted multi-carboxyl polyurethane on interfacial properties of PBO fibre-reinforced BMI resin composites[J]. Applied Surface Science,2020,512:145662.
    [14] CHEN L, HU Z, WU Z, et al. POSS-bound ZnO nanowires as interphase for enhancing interfacial strength and hydrothermal aging resistance of PBO fiber/epoxy resin compo-sites[J]. Composites Part A: Applied Science& Manufacturing,2017,96:1-8.
    [15] 张祯, 王斌, 吕钧炜, 等. 提高PBO纤维/环氧树脂界面相容性的研究进展[J]. 玻璃钢/复合材料, 2018(11):104-108.

    ZHANG Zhen, WANG Bin, LU Junwei, et al. Research progress on improving the compatibility of PBO fiber/epoxy resin interface[J]. FRP/Composite Materials,2018(11):104-108(in Chinese).
    [16] 王栋, 宣丽慧, 李超, 等. 静电纺纤维素纳米晶体/壳聚糖-聚乙烯醇复合纳米纤维的制备与表征[J]. 复合材料学报, 2018, 35(4):964-972.

    WANG Dong, XUAN Lihui, LI Chao, et al. Preparation and characterization of electrospun cellulose nanocrystals/chitosan-polyvinyl alcohol composite nanofibers[J]. Journal of Composite Materials,2018,35(4):964-972(in Chinese).
    [17] SONG B, LIU Z D, PAN D, et al. Layer-by-layer constructing interface with rigid-flexible transition structure for improving interfacial adhesion of PBO fiber composites[J]. Composites Communications,2020,22:10046.
    [18] JIANG S, HOU H, GREINER A, et al. Tough and transparent nylon-6 electrospun nanofiber reinforced melamine-for-maldehyde composites[J]. ACS Applied Materials & Interfaces,2012,4(5):2597-2603.
    [19] MOHANNAD T, ALJARRAH N. Improvement of the mode I interlaminar fracture toughness of carbon fiber composite reinforced with electrospun nylon nanofiber[J]. Composites Part B: Engineering, 2019, 165: 379-385.
    [20] SUBAGIA I, JIANG Z, TIJING L D, et al. Hybrid multi-scale basalt fiber-epoxy composite laminate reinforced with electrospun polyurethane nanofibers containing carbon nanotubes[J]. Fibers & Polymers,2014,15(6):1295-1302.
    [21] 付泽浩, 向阳, 马传国, 等. FeOOH纳米粒子协同聚偏氟乙烯电纺纤维膜插层增强碳纤维复合材料层间断裂韧性[J]. 复合材料学报, 2021, 39(4):1582-1591.

    FU Zehao, XIANG Yang, MA Chuanguo, et al. Intercalation of FeOOH nanoparticles and polyvinylidene fluoride electrospun fiber membrane to enhance interlaminar fracture toughness of carbon fiber composites[J]. Chinese Journal of Composites,2021,39(4):1582-1591(in Chinese).
    [22] 中国国家标准化管理委员会. 聚合物基复合材料短梁剪切强度试验方法: GB/T 30969—2014[S]. 北京: 中国标准出版社, 2014.

    China National Standardization Administration. Test method for shear strength of polymer matrix composites short beams: GB/T 30969—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
    [23] DEITZEL J M, KLEINMEYER J D, HARRIS D E A, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer,2001,42(1):261-272. doi: 10.1016/S0032-3861(00)00250-0
    [24] ZONG X H, KWANGSOK K, FANG D F, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes[J]. Polymer,2002,43(16):4403-4412. doi: 10.1016/S0032-3861(02)00275-6
    [25] SAGHAFI H, MOALLEMZADEH A R, ZUCCHELLI A, et al. Shear mode of fracture in composite laminates toughened by polyvinylidene fluoride nanofibers[J]. Composite Structures,2019,227:111327.
    [26] XUE L L, FAN W, YU Y, et al. A novel strategy to fabricate core-sheath structure piezoelectric yarns for wearable energy harvesters[J]. Advanced Fiber Materials,2021,3:239-250. doi: 10.1007/s42765-021-00081-z
    [27] FAN W, LI J L, ZHENG Y. Improved thermo-oxidative stability of three-dimensional and four-directional braided carbon fiber/epoxy hierarchical composites using graphene-reinforced gradient interface layer[J]. Polymer Testing,2015,44:177-185. doi: 10.1016/j.polymertesting.2015.04.010
    [28] FAN W, LI J L, WANG H, et al. Influence of thermo-oxidative aging on the impact property of conventional and graphene-based carbon fabric composites[J]. Journal of Reinforced Plastics and Composites,2015,34(2):116-130. doi: 10.1177/0731684414565225
    [29] TIAN H, FAN W, GE S, et al. Nanofiber-sheathed structure for enhancing interfacial properties of basalt fiber-reinforced composites[J]. Composites Communications,2021,23:10058.
  • 加载中
图(9)
计量
  • 文章访问数:  860
  • HTML全文浏览量:  467
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-09
  • 修回日期:  2021-11-01
  • 录用日期:  2021-11-08
  • 网络出版日期:  2021-11-17
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回