留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

持压荷载与干湿循环作用下再生混凝土氯盐侵蚀行为

鲍玖文 王云伟 牟新宇 张鹏 于子浩 赵铁军

鲍玖文, 王云伟, 牟新宇, 等. 持压荷载与干湿循环作用下再生混凝土氯盐侵蚀行为[J]. 复合材料学报, 2022, 40(0): 1-10
引用本文: 鲍玖文, 王云伟, 牟新宇, 等. 持压荷载与干湿循环作用下再生混凝土氯盐侵蚀行为[J]. 复合材料学报, 2022, 40(0): 1-10
Jiuwen BAO, Yunwei WANG, Xinyu MOU, Peng ZHANG, Zihao YU, Tiejun ZHAO. Chloride ingress behavior of recycled aggregate concrete subjected to sustained compressive loading and drying-wetting cycles[J]. Acta Materiae Compositae Sinica.
Citation: Jiuwen BAO, Yunwei WANG, Xinyu MOU, Peng ZHANG, Zihao YU, Tiejun ZHAO. Chloride ingress behavior of recycled aggregate concrete subjected to sustained compressive loading and drying-wetting cycles[J]. Acta Materiae Compositae Sinica.

持压荷载与干湿循环作用下再生混凝土氯盐侵蚀行为

基金项目: 国家自然科学基金(51908307, 51922052;U2106219);山东省自然科学基金(ZR2021JQ17)
详细信息
    通讯作者:

    张鹏,博士,教授,博士生导师,研究方向为混凝土耐久性 E-mail: peng.zhang@qut.edu.cn

  • 中图分类号: TU528.01

Chloride ingress behavior of recycled aggregate concrete subjected to sustained compressive loading and drying-wetting cycles

  • 摘要: 采用干湿比为3∶1和质量分数为5%的氯化钠溶液,开展了持压荷载与干湿循环作用共同作用下不同再生粗骨料取代率(r=0、30%、50%、100%)混凝土的氯离子传输试验,分析了持压应力水平(λc=0.1、0.3、0.5)对氯盐侵蚀性能的影响。基于非饱和混凝土的氯离子对流-扩散模型,提出了考虑应力水平和再生骨料取代率影响的水分和氯离子扩散系数模型,并验证了该模型的有效性。结果表明:相同再生粗骨料取代率的混凝土内自由氯离子含量、氯离子扩散系数和表面氯离子浓度均随应力水平的增加呈先减小后增大的趋势,同一应力水平下与再生粗骨料取代率呈正相关,再生粗骨料取代率为100%的试件承受0.1fc、0.3fc、0.5fc应力作用的氯离子扩散系数分别是无应力状态的0.97、0.88和1.48倍;所建立的持压荷载与干湿循环作用下再生混凝土氯离子传输模型,为再生混凝土耐久性分析提供理论依据。

     

  • 图  1  粗骨料颗粒级配

    Figure  1.  Particle size distribution of coarse aggregate

    图  2  不同再生粗骨料取代率的混凝土抗压强度

    Figure  2.  Compressive strength of concrete with various replacement rates of RCA

    图  3  持压加载与应力监测装置

    Figure  3.  Schematic diagram of sustained compressive loading and stress monitor device

    图  4  全自动人工模拟潮汐试验装置示意图

    Figure  4.  Schematic diagram of automatic artificial tidal simulation test device

    图  5  不同持压应力水平对再生混凝土自由氯离子含量的影响

    Figure  5.  Effect of different sustained compressive stress levels on free chloride content of RAC

    图  6  再生混凝土氯离子扩散系数和表面氯离子浓度

    Figure  6.  Chloride diffusion coefficient and surface chloride concentration of RAC

    图  7  考虑再生骨料取代率和应力水平影响的拟合参数

    Figure  7.  Fitting parameters considering the effects of RCA replacement rate and stress level

    图  8  再生混凝土内部自由氯离子含量数值计算与试验结果的对比

    Figure  8.  Comparison of free chloride content in RAC between numerical results and test data

    图  9  以往研究[30-31]中自由氯离子含量数值计算与试验结果的对比

    Figure  9.  Comparison of free chloride content between numerical results and test data in the previous studies[30-31]

    表  1  粗骨料物理指标

    Table  1.   Physical index of coarse aggregate

    Coarse aggregateWater absorption
    /%
    Moisture content
    /%
    Crushing index
    /%
    Apparent density
    /(kg·m−3)
    NCA1.50.411.22590.5
    RCA7.53.419.12534.7
    Notes: NCA is natural coarse aggregate; RCA is recycled coarse aggregate.
    下载: 导出CSV

    表  2  再生混凝土配合比

    Table  2.   Mix proportion of RAC kg/m3

    TypeCSRCAWAWNCASP
    R03806270152012692.3
    R30380627380.715215.6888.32.3
    R50380627634.515226.0634.52.3
    R100380627126915252.002.3
    Notes: R0, R30, R50 and R100 represent the recycled aggregate concrete with the replacement ratio of 0%, 30%, 50% and 100%, respectively; C is the cement; S is the sand; W is the water; AW is the additional water; SP is the superplasticizer.
    下载: 导出CSV

    表  3  以往研究[30-31]中试验方案和模型计算参数

    Table  3.   Test scheme and model calculation parameters in the previous studies[30-31]

    GroupDrying-wetting ratio αtOne cyclic period /dExposure time /d
    C303:11d30d
    C503:11d30d
    R503:25d30d
    Notes: C30 and C50 represent the designed concrete strength with 30 MPa and 50 MPa, respectively.
    下载: 导出CSV
  • [1] 肖建庄. 再生混凝土[M]. 北京: 中国建筑工业出版社, 2008.

    XIAO Jianzhuang. Recycled concrete[M]. Beijing: China Architecture and Building Press, 2008(in Chinese).
    [2] PEDRO D, DE BRITO J, EVANGELISTA L. Durability performance of high-performance concrete made with recycled aggregates, fly ash and densified silica fume[J]. Cement and Concrete Composites,2018,93:63-74. doi: 10.1016/j.cemconcomp.2018.07.002
    [3] 宋鲁光. 荷载干湿交替作用下氯离子在混凝土中的传输性能研究[D]. 南京: 东南大学, 2015.

    SONG Luguang. Transport of chloride in concrete subjected to coupling flexural load and wetting-drying cycles[D]. Nanjing: Southeast University, 2015(in Chinese).
    [4] WU J, LI H, WANG Z, et al. Transport model of chloride ions in concrete under loads and drying-wetting cycles[J]. Construction and Building Materials,2016,112:733-738. doi: 10.1016/j.conbuildmat.2016.02.167
    [5] WANG J, BASHEER P, NANUKUTTAN S, et al. Influence of service loading and the resulting micro-cracks on chloride resistance of concrete[J]. Construction and Building Materials,2016,108:56-66. doi: 10.1016/j.conbuildmat.2016.01.005
    [6] 张伟平, 张庆章, 顾祥林, 等. 环境条件和应力水平对混凝土中氯离子传输的影响[J]. 江苏大学学报(自然科学版), 2013, 34(1):101-106.

    ZHANG Weiping, ZHANG Qingzhang, GU Xianglin, et al. Effects of environmental conditions and stress level on chloride ion transport in concrete[J]. Journal of Jiangsu University(Natural Science Edition),2013,34(1):101-106(in Chinese).
    [7] XU J, LI F, ZHAO J, et al. Model of time-dependent and stress-dependent chloride penetration of concrete under sustained axial pressure in the marine environment[J]. Construction and Building Materials,2018,170:207-216. doi: 10.1016/j.conbuildmat.2018.03.077
    [8] WU J, LI H, WANG Z, et al. Transport model of chloride ions in concrete under loads and drying-wetting cycles[J]. Construction and Building Materials,2016,112:733-738. doi: 10.1016/j.conbuildmat.2016.02.167
    [9] 欧阳璋, 陈幼佳. 重复压应力作用后再生混凝土中氯离子渗透性研究[J]. 混凝土, 2017(1):31-33. doi: 10.3969/j.issn.1002-3550.2017.01.009

    OUYANG Zhang, CHEN Youjia. Study on chloride permeability of recycled concrete after repeated compressive stress[J]. Concrete,2017(1):31-33(in Chinese). doi: 10.3969/j.issn.1002-3550.2017.01.009
    [10] 鲍玖文, 李树国, 张鹏, 等. 轴压重复荷载作用后再生混凝土毛细吸水性能[J]. 建筑材料学报, 2021, 24(1):71-76. doi: 10.3969/j.issn.1007-9629.2021.01.010

    BAO Jiuwen, LI Shuguo, ZHANG Peng, et al. Capillary water absorption of recycled aggregate concrete after repeated axial compressive loading[J]. Journal of Building Materials,2021,24(1):71-76(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.01.010
    [11] 王玉建. 加载对再生骨料混凝土渗透性的影响[D]. 北京: 北京交通大学, 2010.

    WANG Yujian. Effect of loading on permeability of recycled aggregate concrete[D]. Beijing: Beijing Jiaotong University, 2010(in Chinese).
    [12] QI B, GAO J, CHEN F, et al. Chloride penetration into recycled aggregate concrete subjected to wetting–drying cycles and flexural loading[J]. Construction and Building Materials,2018,174:130-137. doi: 10.1016/j.conbuildmat.2018.04.122
    [13] WU Y, XIAO J. The effect of microscopic cracks on chloride diffusivity of recycled aggregate concrete[J]. Construction and Building Materials,2018,170:326-346. doi: 10.1016/j.conbuildmat.2018.03.045
    [14] JIN L, YU H, WANG Z, et al. Effect of crack and damaged zone on chloride penetration in recycled aggregate concrete: A seven-phase mesoscale numerical method[J]. Construction and Building Materials,2021,291:123383. doi: 10.1016/j.conbuildmat.2021.123383
    [15] 中国国家标准化管理委员会. 混凝土用再生粗骨料: GB/T 25177—2010[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of the People's Republic of China. Recycled coarse aggregate for concrete: GB/T 25177—2010[S]. Beijing: Standards Press of China, 2010(in Chinese).
    [16] 中国国家标准化管理委员会. 建筑用卵石、碎石: GB/T 14685—2011[S]. 北京: 中国标准出版社, 2011.

    Standardization Administration of the People's Republic of China. Pebbie and crushed stone for building: GB/T 14685—2011[S]. Beijing: Standards Press of China, 2011(in Chinese).
    [17] 郭远新, 李秋义, 单体庆, 等. 再生粗骨料混凝土配合比简易设计方法[J]. 沈阳建筑大学学报(自然科学版), 2017(6):75-84.

    GUO Yuanxin, LI Qiuyi, SHAN Tiqing, et al. Simplified design method for mix proportion of recycled coarse aggregate concrete[J]. Journal of Shenyang Jianzhu University (Natural Science),2017(6):75-84(in Chinese).
    [18] XIAO J, LI J, ZHANG C. Mechanical properties of recycled aggregate concrete under uniaxial loading[J]. Cement and Concrete Research,2005,35(6):1187-1194. doi: 10.1016/j.cemconres.2004.09.020
    [19] MA Z, LIU M, TANG Q, et al. Chloride permeability of recycled aggregate concrete under the coupling effect of freezing-thawing, elevated temperature or mechanical damage[J]. Construction and Building Materials,2020,237:117648. doi: 10.1016/j.conbuildmat.2019.117648
    [20] 吴相豪, 岳鹏君. 再生混凝土中氯离子渗透性能试验研究[J]. 建筑材料学报, 2011, 14(3):381-384+417. doi: 10.3969/j.issn.1007-9629.2011.03.018

    WU Xianghao, YUE Pengjun. Experimental study on chloride ion penetration into recycled aggregate concrete[J]. Journal of Building Materials,2011,14(3):381-384+417(in Chinese). doi: 10.3969/j.issn.1007-9629.2011.03.018
    [21] 肖建庄, 李标, 杨钱荣, 等. 复合改性再生混凝土抗氯离子渗透性能[J]. 混凝土与水泥制品, 2019, 282(10):1-5.

    XIAO Jianzhuang, LI Biao, YANG Qianrong, et al. Study on chloride penetration resistance of compound modified recycled concrete[J]. China Concrete and Cement Products,2019,282(10):1-5(in Chinese).
    [22] WANG W, Wu J, WANG Z, et al. Chloride diffusion coefficient of recycled aggregate concrete under compressive loading[J]. Materials and Structures,2016,49(11):4729-4736. doi: 10.1617/s11527-016-0820-x
    [23] 鲍玖文, 王立成. 干湿交替下水分及氯离子在混凝土中传输的细观数值模拟[J]. 海洋工程, 2014, 32(1):68-74+83. doi: 10.3969/j.issn.1005-9865.2014.01.009

    BAO Jiuwen, WANG Licheng. Mesoscale simulation of water and chloride transport in concrete subjected to drying-wetting cycles[J]. The Ocean Engineering,2014,32(1):68-74+83(in Chinese). doi: 10.3969/j.issn.1005-9865.2014.01.009
    [24] 曹卫群. 干湿交替环境下混凝土的氯离子侵蚀与耐久性防护[D]. 西安: 西安建筑科技大学, 2013.

    CAO Weiqun. Chloride transport and cover protection of concrete under drying-wetting cycles[D]. Xi’an: Xi’an University of Architecture and Technology, 2013(in Chinese).
    [25] 中华人民共和国交通运输部. 水运工程混凝土试验检测技术规范: JTS/T 236-2019[S]. 北京: 人民交通出版社, 2019.

    Ministry of Transport of the People's Republic of China. Technical Specification for Concrete Testing of Port and Waterway Engineering: JTS/T 236-2019[S]. Beijing: China Communication Press, 2019 (in Chinese).
    [26] 高延红, 赵静, 郑盈盈, 等. 模拟自然潮差环境混凝土氯离子侵蚀对流区深度的相似性与随机性[J]. 自然灾害学报, 2018, 27(5):63-69.

    GAO Yanhong, ZHAO Jing, ZHENG Yingying, et al. Similarity and randomness of convection zone depth of chloride in concrete under simulated tidal environment[J]. Journal of Natural Disasters,2018,27(5):63-69(in Chinese).
    [27] BAO J, LI S, ZHANG P, et al. Influence of the incorporation of recycled coarse aggregate on water absorption and chloride penetration into concrete[J]. Construction and Building Materials,2020,239:117845. doi: 10.1016/j.conbuildmat.2019.117845
    [28] WANG J, ZHANG J, CAO D. Pore characteristics of recycled aggregate concrete and its relationship with durability under complex environmental factors[J]. Construction and Building Materials,2020,272:121642.
    [29] CHEN D, YANG K, HU D, et al. A meso-stochastic research on the chloride transport in unsaturated concrete[J]. Construction and Building Materials,2021,273:121986. doi: 10.1016/j.conbuildmat.2020.121986
    [30] 庄智杰. 实海暴露和人工摸拟潮汐区水泥基材料氯离子侵蚀机理研究[D]. 青岛: 青岛理工大学, 2021.

    ZHUANG Zhijie. Study on mechanism of chloride ion erosion on cement-based materials in real sea exposure and artificial tidal zone[D]. Qingdao: Qingdao University of Technology, 2021.
    [31] 康天蓓, 刘昱, 周静海, 等. 干湿循环下废弃纤维再生混凝土氯离子传输性能[J/OL]. 建筑材料学报. https://kns.cnki.net/kcms/detail/31.1764.TU.20210514.1106.022.html.

    KANG Tianbei, LIU Yu, ZHOU Jinghai, et al. Chloride transport performance of waste fiber recycled concrete under wet-dry cycles[J/OL]. Journal of Building Materials. https://kns.cnki.net/kcms/detail/31.1764.TU.20210514.1106.022.html.
  • 加载中
计量
  • 文章访问数:  101
  • HTML全文浏览量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-25
  • 录用日期:  2022-03-06
  • 修回日期:  2022-02-20
  • 网络出版日期:  2022-03-30

目录

    /

    返回文章
    返回