留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TaC对Ti(C0.7N0.3)基金属陶瓷的物相、显微结构和力学性能的影响

劳振勇 郭伟明 罗展鹏 谭大旺 林华泰

劳振勇, 郭伟明, 罗展鹏, 等. TaC对Ti(C0.7N0.3)基金属陶瓷的物相、显微结构和力学性能的影响[J]. 复合材料学报, 2021, 39(0): 1-8
引用本文: 劳振勇, 郭伟明, 罗展鹏, 等. TaC对Ti(C0.7N0.3)基金属陶瓷的物相、显微结构和力学性能的影响[J]. 复合材料学报, 2021, 39(0): 1-8
Zhenyong LAO, Weiming GUO, Zhanpeng LUO, Dawang TAN, Huatai LIN. Effect of TaC on Phase, Microstructure and Mechanical Properties of Ti(C0.7N0.3)-Based Cermets[J]. Acta Materiae Compositae Sinica.
Citation: Zhenyong LAO, Weiming GUO, Zhanpeng LUO, Dawang TAN, Huatai LIN. Effect of TaC on Phase, Microstructure and Mechanical Properties of Ti(C0.7N0.3)-Based Cermets[J]. Acta Materiae Compositae Sinica.

TaC对Ti(C0.7N0.3)基金属陶瓷的物相、显微结构和力学性能的影响

基金项目: 广东省引进创新科研团队计划(2013G061)
详细信息
    通讯作者:

    郭伟明,博士,教授,硕士生导师,研究方向为高性能陶瓷部件与加工(陶瓷刀具、陶瓷球等);核能用先进陶瓷;超高温与高熵陶瓷 E-mail: guo1237@126.com

  • 中图分类号: TH145.9

Effect of TaC on Phase, Microstructure and Mechanical Properties of Ti(C0.7N0.3)-Based Cermets

  • 摘要: 为了制备高硬度高韧性的Ti(C0.7N0.3)基金属陶瓷,采用了1600℃真空无压烧结制备了含TaC的Ti(C0.7N0.3)-WC-Mo2C-VC-AlN-Ni/Co系金属陶瓷,研究了TaC (0wt%、5wt%、10wt%、15wt%)对金属陶瓷的物相、显微结构、力学性能的影响。结果表明,随着TaC含量增加,Ti(C0.7N0.3) (200)主峰逐渐向低角度偏移,环形相的厚度逐渐增大,金属陶瓷的维氏硬度和断裂韧性均先增大后减小。当TaC含量为10wt%时,核芯相细化,尺寸离散度最小,环形相发育更完整且均匀,金属陶瓷获得最高的维氏硬度和断裂韧性,分别为17.79 ± 0.15 GPa和10.20 ± 0.39 MPa·m1/2

     

  • 图  1  (a)不同TaC含量的Ti(C0.7N0.3)基金属陶瓷的归一化XRD图谱;(b)35°~43°范围内的XRD图谱。

    Figure  1.  (a) Normalized XRD diffraction patterns of Ti(C0.7N0.3)-based cermets with different content; (b) XRD patterns in the range of 35°-43°.

    图  2  不同TaC含量的Ti(C0.7N0.3)基金属陶瓷的SEM-BSE图像 (a) Ti(C0.7N0.3);(b) 5wt%TaC/Ti(C0.7N0.3);(c) 10wt%TaC/Ti(C0.7N0.3);(d) 15wt%TaC/Ti(C0.7N0.3)

    Figure  2.  SEM-BSE images of Ti(C0.7N0.3)-based cermets with different amounts of TaC (a) Ti(C0.7N0.3);(b) 5wt%TaC/Ti(C0.7N0.3);(c) 10wt%TaC/Ti(C0.7N0.3);(d) 15wt%TaC/Ti(C0.7N0.3)

    图  3  EDS线扫描Ti(C0.7N0.3)基金属陶瓷的陶瓷相主要元素的分布:(a)Ti(C0.7N0.3);(b)10wt%TaC/Ti(C0.7N0.3)

    Figure  3.  Distribution of main elements in the ceramic phases of Ti(C0.7N0.3)-based cermets scanned by EDS line (a)Ti(C0.7N0.3);(b)10wt%TaC/Ti(C0.7N0.3)

    图  4  不同TaC含量的Ti(C0.7N0.3)基金属陶瓷的核芯相粒度分布 (a) Ti(C0.7N0.3);(b) 5wt%TaC/Ti(C0.7N0.3);(c) 10wt%TaC/Ti(C0.7N0.3);(d) 15wt%TaC/Ti(C0.7N0.3)

    Figure  4.  Particle size distribution of core phase of Ti(C0.7N0.3)-based cermets with different amounts of TaC (a) Ti(C0.7N0.3);(b) 5wt%TaC/Ti(C0.7N0.3);(c) 10wt%TaC/Ti(C0.7N0.3);(d) 15wt%TaC/Ti(C0.7N0.3)

    图  5  不同TaC含量的Ti(C0.7N0.3)基金属陶瓷的力学性能

    Figure  5.  Mechanical properties of Ti(C0.7N0.3)-based cermets with different amounts of TaC

    图  6  不同TaC含量的Ti(C0.7N0.3)基金属陶瓷的裂纹扩展: (a) Ti(C0.7N0.3);(b) 5wt%TaC/Ti(C0.7N0.3);(c) 10wt%TaC/Ti(C0.7N0.3);(d) 15wt%TaC/Ti(C0.7N0.3)

    Figure  6.  Crack propagation of Ti(C0.7N0.3)-based cermets with different amounts of TaC: (a) Ti(C0.7N0.3);(b) 5wt%TaC/Ti(C0.7N0.3);(c) 10wt%TaC/Ti(C0.7N0.3);(d) 15wt%TaC/Ti(C0.7N0.3)

    表  1  Ti(C0.7N0.3)基金属陶瓷试样的原料配比(wt%)

    Table  1.   Raw material ratio of Ti(C0.7N0.3)-based cermets sample(wt%)

    Sample
    designations
    Chemical composition/wt%
    Ti(C0.7N0.3) WC Co Ni VC Mo2C AlN TaC
    Ti(C0.7N0.3)59156.56.556.51.50
    5wt%TaC/Ti(C0.7N0.3)54156.56.556.51.55
    10wt%TaC/Ti(C0.7N0.3)49156.56.556.51.510
    15wt%TaC/Ti(C0.7N0.3)44156.56.556.51.515
    下载: 导出CSV

    表  2  不同TaC含量的Ti(C0.7N0.3)基金属陶瓷的密度和相对密度

    Table  2.   Density and Relative density of Ti(C0.7N0.3)-based cermets with different TaC content

    SampleTi(C0.7N0.3)5wt%TaC/Ti(C0.7N0.3)10wt%TaC/Ti(C0.7N0.3)15wt%TaC/Ti(C0.7N0.3)
    Density/(g·cm−3)6.446.546.906.79
    Relative density/%99.9899.8699.5295.77
    下载: 导出CSV
  • [1] 刘宁. Ti(C, N)基金属陶瓷材料[J]. 合肥:合肥工业大学出版社, 2009:67-93.

    LIU N. Ti(C, N)-based cermets[J]. Hefei:Hefei University of Technology Press,2009:67-93(in Chinese).
    [2] WAN W C, XIONG J, LIANG M X. Effects of secondary carbides on the microstructure, mechanical properties and erosive wear of Ti(C, N)-based cermets[J]. Ceramics International,2016,43(1):944-952.
    [3] 陈文琳, 刘宁, 晁盛. 添加碳化钛对超细Ti(C, N)基金属陶瓷显微结构和力学性能的影响[J]. 硅酸盐学报, 2007, 35(6):725-730. doi: 10.3321/j.issn:0454-5648.2007.06.012

    CHEN W L, LIU N, CHAO S. Effect of titanium carbide addition on microstructure and mechanical and mechanical properties of superfine Ti(C, N)-based ceramics[J]. Journal of the Chinese Ceramic Society,2007,35(6):725-730(in Chinese). doi: 10.3321/j.issn:0454-5648.2007.06.012
    [4] ZHOU W, ZHENG Y, ZHAO Y J, et al. Densification behavior, microstructure evolution and mechanical properties of Ti(C, N)-based cermets fabricated by in situ carbothermal reduction of WO3 and subsequent liquid sintering[J]. International Journal of Refractory Metals & Hard Materials,2018,74:70-77.
    [5] 宋金鹏, 高姣姣, 吕明. 颗粒弥散和核-壳共存的TiCN基金属陶瓷的制备[J]. 复合材料学报, 2020, 37(10):2552-2560.

    SONG J P, GAO J J, LV M. Fabrication of TiCN-based cermet with a coexisted microstructure of particle dispersion and core-rim structure[J]. Acta Materiae Compositae Sinica,2020,37(10):2552-2560(in Chinese).
    [6] 陈文琳. 超细晶粒Ti(C, N)基金属陶瓷刀具与切削性能研究 [D]. 合肥工业大学, 2007.

    CHEN W L. Research on Tool and Cutting Performance of Ultra-fine Grain Ti(C, N)-based Cermets[D]. Hefei University of Technology, 2007 (in Chinese).
    [7] 钟杰, 郑勇, 张一欣. 功能梯度Ti(C, N)基金属陶瓷制备技术[J]. 复合材料学报, 2009, 26(3):111-115. doi: 10.3321/j.issn:1000-3851.2009.03.020

    ZHONG J, ZHENG Y, ZHANG Y X. Fabrication technology of functionally graded Ti(C, N)-based cermets[J]. Acta Materiae Compositae Sinica,2009,26(3):111-115(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.03.020
    [8] WU P, ZHENG Y, ZHAO Yongle, et al. Effect of TaC addition on the microstructures and mechanical properties of Ti(C, N)-based cermets[J]. Materials & Design,2010,31:3537-3541.
    [9] XIONG J, GUO Z X, SHEN B L. The effect of WC, Mo2C, TaC content on the microstructure and properties of ultra-fine TiC0.7N0.3 cermet[J]. Materials & Design,2007,28:1689-1694.
    [10] VERMA V, KUMAR BVM. Processing of TiCN–WC–Ni/Co Cermets via Conventional and Spark Plasma Sintering Technique[J]. Transactions of the Indian Institute of Metals,2017,70(3):843-853. doi: 10.1007/s12666-017-1069-y
    [11] KIANI S, YANG JM, KODAMBAKA S. Nanomechanics of Refractory Transition-Metal Carbides: A Path to Discovering Plasticity in Hard Ceramics[J]. Journal of the American Ceramic Society,2015,98(8):2313-2323. doi: 10.1111/jace.13686
    [12] ZHAO X R, ZHANG M X, ZUO D W, et al. Ti(C, N)-based cermet with different TaC/( TaC+WC) weight ration by in-situ reactive hot pressing: Microstructure and mechanical properties[J]. Materials Today Communications,2020,25:1-8.
    [13] KUMAR BVM, BASU B J. Tribochemistry in sliding wear of TiCN–Ni-based cermets[J]. Journal of Materials Research,2008,23(5):1214-1227. doi: 10.1557/JMR.2008.0165
    [14] 詹斌, 刘宁. VC对纳米TiN改性Ti(C, N)基金属陶瓷组织和性能的影响[J]. 硬质合金, 2010, 27(4):214-220. doi: 10.3969/j.issn.1003-7292.2010.04.005

    ZHAN B, LIU N. Effect of VC on microstructure and properties of Ti(C, N)-based cermet modified by nano TiN[J]. Cemented Carbide,2010,27(4):214-220(in Chinese). doi: 10.3969/j.issn.1003-7292.2010.04.005
    [15] XIONG H W, XIE D, CHEN J J. Ti(C, N)-based cermets with strengthened interfaces: roles of secondary cubic carbides[J]. Journal of the American Ceramic Society,2020,103(3):1582-1592. doi: 10.1111/jace.16893
    [16] XU L W, LIN N, ZHAO L B, et al. Improvement in wear and corrosion resistance of Ti(C, N)-based cermets via Aluminum nitride additions[J]. Vacuum,2019,168:1-18.
    [17] LIU N, XU Y D, LI Z H, et al. Effects of addition of TiN nanoparticles on microstructure and mechanical properties of TiC based cermets[J]. Materials Science and Technology,2002,18(5):586-590. doi: 10.1179/026708302225001769
    [18] LIU A, LIU N. Effect of WC-Co granules on mechanical properties and microstructure of Ti(C, N)-based cermets[J]. Ceramics International,2016,42(14):15274-15284. doi: 10.1016/j.ceramint.2016.06.143
    [19] LEE H C, GURLAND J. Hardness and deformation of cemented tungsten carbide [J]. Materials Science and Engineering. 1987, 33: 125–133.
    [20] 刘文俊, 熊惟皓, 郑勇. Ti(C, N)基金属陶瓷断口形貌及增韧机理[J]. 中国有色金属学报, 2006, 16(5):800-804. doi: 10.3321/j.issn:1004-0609.2006.05.009

    LIU W J, XIONG W H, ZHENG Y. Fracture morphology and toughening mechanism of Ti(C, N)-based cermets[J]. The Chinese Journal of Nonferrous Metals,2006,16(5):800-804(in Chinese). doi: 10.3321/j.issn:1004-0609.2006.05.009
    [21] ZHOU H J, HUANG C Z, ZOU B, et al. Effects of metal phases and carbides on the microstructure and mechanical properties of Ti(C, N)-based cermets cutting tool materials[J]. Materials Science and Engineering A,2014,618:462-470. doi: 10.1016/j.msea.2014.09.052
  • 加载中
计量
  • 文章访问数:  155
  • HTML全文浏览量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-30
  • 录用日期:  2021-11-16
  • 修回日期:  2021-11-08
  • 网络出版日期:  2021-11-26

目录

    /

    返回文章
    返回