留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温下多轴向拉挤复合材料面内抗剪性能

张玲峰 李钱怿 曹大富 刘伟庆 王琨

张玲峰, 李钱怿, 曹大富, 等. 高温下多轴向拉挤复合材料面内抗剪性能[J]. 复合材料学报, 2022, 39(12): 6168-6176. doi: 10.13801/j.cnki.fhclxb.20211213.002
引用本文: 张玲峰, 李钱怿, 曹大富, 等. 高温下多轴向拉挤复合材料面内抗剪性能[J]. 复合材料学报, 2022, 39(12): 6168-6176. doi: 10.13801/j.cnki.fhclxb.20211213.002
ZHANG Lingfeng, LI Qianyi, CAO Dafu, et al. In-plane shear properties of multi-axial pultruded composites at elevated temperatures[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6168-6176. doi: 10.13801/j.cnki.fhclxb.20211213.002
Citation: ZHANG Lingfeng, LI Qianyi, CAO Dafu, et al. In-plane shear properties of multi-axial pultruded composites at elevated temperatures[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6168-6176. doi: 10.13801/j.cnki.fhclxb.20211213.002

高温下多轴向拉挤复合材料面内抗剪性能

doi: 10.13801/j.cnki.fhclxb.20211213.002
基金项目: 国家自然科学基金(51238003;52108253);江苏省“双创博士”(JSSCBS20211064)
详细信息
    通讯作者:

    张玲峰,博士,讲师,硕士生导师,研究方向为纤维增强复合材料的高温力学性能 E-mail:lfzhang@yzu.edu.cn

  • 中图分类号: TB332

In-plane shear properties of multi-axial pultruded composites at elevated temperatures

  • 摘要: 为研究纤维布、剪切面、温度对多轴向拉挤复合材料抗剪性能的影响,对短切毡(剪切面垂直于或平行于纤维方向)增强的传统拉挤复合材料及90°单轴布和±45°/90°三轴布增强的多轴向拉挤复合材料,进行了常温及高温下的面内抗剪试验。结果表明,破坏模式主要为斜对角方向的微屈曲、脱层和剪切失效,并取决于纤维布和剪切面。纤维布对抗剪性能有着重要影响,常温下三轴布增强试件的平均抗剪强度为67.5 MPa,远远好于单轴布及短切毡增强试件(44.4 MPa和45.2 MPa)。剪切面对抗剪性能有一定的影响,常温下剪切面垂直于纤维方向的短切毡增强试件的平均抗剪强度好于平行于纤维方向的强度(38.9 MPa)。然而,随着温度的升高,各组试件的抗剪性能迅速降低,同时各组抗剪性能的差异也逐渐减小。基于热动力学理论和并联定律的单向复合材料抗剪性能计算模型总体上也适用于多轴向拉挤复合材料。最后,在相关试验的基础上提出了适用于高温下多轴向拉挤复合材料抗剪强度、剪切模量的计算公式。研究结果可为高温下的多轴向拉挤复合材料抗剪设计提供依据。

     

  • 图  1  多轴向E6386T级玻璃纤维布

    Figure  1.  Multi-axial E6386T glass fiber mat

    CSM—Chopped strand mat; UM—Uniaxial mat; TM—Triaxial mat

    图  2  剪切试验装置

    Figure  2.  Experimental shearing device

    DIC—Digital image correlation

    图  3  CSM结构E6386T玻璃单丝/EL-400不饱和聚酯多轴向拉挤复合材料热分析试验结果

    Figure  3.  Thermal analysis results of CSM structure E6386T glass fiber/EL-400 unsaturated polyester multi-axial pultruded composites

    图  4  E6386T玻璃单丝/EL-400不饱和聚酯多轴向拉挤复合材料剪切破坏模式

    Figure  4.  Shear failure modes of E6386T glass fiber/EL-400 unsaturated polyester multi-axial pultruded composites

    图  5  E6386T玻璃单丝/EL-400不饱和聚酯多轴向拉挤复合材料剪应力-剪应变曲线

    Figure  5.  Shear stress-strain curves of E6386T glass fiber/EL-400 unsaturated polyester multi-axial pultruded composites

    图  6  E6386T玻璃单丝/EL-400不饱和聚酯多轴向拉挤复合材料的剪切强度

    Figure  6.  Shear strength of E6386T glass fiber/EL-400 unsaturated polyester multi-axial pultruded composites

    图  7  E6386T玻璃单丝/EL-400不饱和聚酯多轴向拉挤复合材料剪切模量

    Figure  7.  Shear modulus of E6386T glass fiber/EL-400 unsaturated polyester multi-axial pultruded composites

    图  8  不同文献中玻璃纤维/不饱和聚酯复合材料的归一化抗剪强度

    Figure  8.  Normalized shear strength of glass fiber/unsaturated polyester composites from different literatures

    图  9  玻璃纤维/不饱和聚酯复合材料的归一化试验值与公式计算值

    Figure  9.  Normalized experimental and calculated values of glass fiber/unsaturated polyester composites

    EXP—Experience point; CAL—Formula calculated value

    表  1  试验工况

    Table  1.   Test configurations

    IDReinforced fabricNumber of layersDensity/(kg·m−3)Shear planeTarget temperature/℃
    NTCSM31893Perpendicular to the fiber20, 40, 60, 80, 100, 120, 140, 180
    NPCSM31893Parallel to the fiber20, 40, 60, 80, 100, 120, 140, 180
    UTUM31836Perpendicular to the fiber20, 40, 60, 80, 100, 120, 140, 180
    TTTM31928Perpendicular to the fiber20, 40, 60, 80, 100, 120, 140, 180
    Notes: In specimen ID, the first letter: N—Chopped strand mat; U—Uniaxial mat; T—Triaxial mat; the second letter: T—Perpendicular to the fiber; P—Parallel to the fiber.
    下载: 导出CSV

    表  2  E6386T玻璃单丝/EL-400不饱和聚酯多轴向拉挤复合材料剪切强度、模量预测模型输入值

    Table  2.   Input parameters for prediction of shear properties of E6386T glass fiber/EL-400 unsaturated polyester multi-axial pultruded composites

    Strength retention rateModulus retention rate
    τg/τgτl/τgτd/τgGg/GgGl/GgGd/Gg
    1.000.090.011.000.080.01
    Notes: τ—Shear strength; G—Shear modulus; Subscripts g, l and d—Glassy state, viscous state and decomposition state, respectively.
    下载: 导出CSV
  • [1] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3):24-37. doi: 10.3321/j.issn:1000-131X.2006.03.004

    YE Lieping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal,2006,39(3):24-37(in Chinese). doi: 10.3321/j.issn:1000-131X.2006.03.004
    [2] 刘伟庆, 方海, 方园. 纤维增强复合材料及其结构研究进展[J]. 建筑结构学报, 2019, 40(4):1-16.

    LIU Weiqing, FANG Hai, FANG Yuan. Research progress of fiber-reinforced composites and structures[J]. Journal of Building Structures,2019,40(4):1-16(in Chinese).
    [3] 齐玉军, 熊伟, 刘伟庆, 等. 新型FRP拉挤夹芯型材及其结构应用初探[J]. 玻璃钢/复合材料, 2014(12):25-31.

    QI Yujun, XIONG Wei, LIU Weiqing, et al. A review on innovative pultruded FRP composite sandwich profiles and structural utilization[J]. Fiber Reinforced Plastics/Composites,2014(12):25-31(in Chinese).
    [4] TURVEY G J, ZHANG Y. Shear failure strength of web-flange junctions in pultruded GRP WF profiles[J]. Construction and Building Materials,2006,20(1-2):81-89. doi: 10.1016/j.conbuildmat.2005.06.045
    [5] BAI Y, KELLER T, WU C. Pre-buckling and post-buckling failure at web-flange junction of pultruded GFRP beams[J]. Materials and Structures,2013,46(7):1143-1154. doi: 10.1617/s11527-012-9960-9
    [6] NHUT P V, YORESTA F S, KITANE Y, et al. Improving the shear strength of bolted connections in pultruded GFRP using glass fiber sheets[J]. Composite Structures,2021,255:112896. doi: 10.1016/j.compstruct.2020.112896
    [7] BAI Y, KELLER T. Modeling of strength degradation for fiber-reinforced polymer composites in fire[J]. Journal of Composite Materials,2009,43(21):2371-2385. doi: 10.1177/0021998309344642
    [8] CORREIA J R, GOMES M M, PIRES J M, et al. Mechanical behaviour of pultruded glass fibre reinforced polymer composites at elevated temperature: Experiments and model assessment[J]. Composite Structures,2013,98:303-313. doi: 10.1016/j.compstruct.2012.10.051
    [9] GIBSON A G, WU Y S, EVANS J T, et al. Laminate theory analysis of composites under load in fire[J]. Journal of Composite Materials,2006,40(7):639-658. doi: 10.1177/0021998305055543
    [10] MAHIEUX C A, REIFSNIDER K L, CASE S W. Property modeling across transition temperatures in PMC’s: Part I. Tensile properties[J]. Applied Composite Materials,2001,8(4):217-234. doi: 10.1023/A:1011282704357
    [11] WANG K, YOUNG B, SMITH S T. Mechanical properties of pultruded carbon fibre-reinforced polymer (CFRP) plates at elevated temperatures[J]. Engineering Structures,2011,33(7):2154-2161. doi: 10.1016/j.engstruct.2011.03.006
    [12] ROSA I C, MORGADO T, CORREIA J R, et al. Shear behavior of GFRP composite materials at elevated temperature[J]. Journal of Composites for Construction,2018,22(3):4018010. doi: 10.1061/(ASCE)CC.1943-5614.0000839
    [13] WU C, BAI Y, MOTTRAM J T. Effect of elevated tempera-tures on the mechanical performance of pultruded FRP joints with a single ordinary or blind bolt[J]. Journal of Composites for Construction,2016,20(2):4015045. doi: 10.1061/(ASCE)CC.1943-5614.0000608
    [14] 清华大学, 中冶建筑研究总院有限公司. 复合材料拉挤型材结构技术规范: T/CECS 692—2020[S]. 北京: 中国建筑工业出版社, 2020.

    Tsinghua University, Central Research Institute of Building and Construction CO., LTD. MCC Group. Technical specification for structure of pultruded fiber reinforced polymer composites: T/CECS 692—2020[S]. Beijing: China Architecture & Building Press, 2020(in Chinese).
    [15] ASTM. Test methods for constituent content of composite materials: ASTM D3171[S]. West Conshohocken: ASTM International, 2015.
    [16] ASTM. Standard test method for shear properties of composite materials by the V-notched beam method: D5379/D5379M−19[S]. West Conshohocken: ASTM International, 2010.
    [17] KELLER T, TRACY C, ZHOU A. Structural response of liquid-cooled GFRP slabs subjected to fire–Part I: Material and post-fire modeling[J]. Composites Part A: Applied Science and Manufacturing,2006,37(9):1286-1295. doi: 10.1016/j.compositesa.2005.08.006
    [18] GIBSON A G, BROWNE T N, FEIH S, et al. Modeling composite high temperature behavior and fire response under load[J]. Journal of Composite Materials,2012,46(16):2005-2022. doi: 10.1177/0021998311429383
    [19] KIM Y J, QIAN K Z. Compressive behavior of non-slender hollow GFRP structural shapes in thermomechanical loading[J]. Composite Structures,2017,160:813-823. doi: 10.1016/j.compstruct.2016.10.085
    [20] BAI Y, KELLER T. Time dependence of material properties of FRP composites in fire[J]. Journal of Composite Materials,2009,43(12):2469-2484.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  761
  • HTML全文浏览量:  252
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-01
  • 修回日期:  2021-11-26
  • 录用日期:  2021-11-30
  • 网络出版日期:  2021-12-13
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回