留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚合物改性碳纤维增强混凝土的动态压缩力学性能

王志航 白二雷 许金余 刘高杰 杨宁

王志航, 白二雷, 许金余, 等. 聚合物改性碳纤维增强混凝土的动态压缩力学性能[J]. 复合材料学报, 2023, 40(3): 1586-1597. doi: 10.13801/j.cnki.fhclxb.20220429.002
引用本文: 王志航, 白二雷, 许金余, 等. 聚合物改性碳纤维增强混凝土的动态压缩力学性能[J]. 复合材料学报, 2023, 40(3): 1586-1597. doi: 10.13801/j.cnki.fhclxb.20220429.002
WANG Zhihang, BAI Erlei, XU Jinyu, et al. Dynamic compression mechanical properties of polymer modified carbon fiber reinforced concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1586-1597. doi: 10.13801/j.cnki.fhclxb.20220429.002
Citation: WANG Zhihang, BAI Erlei, XU Jinyu, et al. Dynamic compression mechanical properties of polymer modified carbon fiber reinforced concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1586-1597. doi: 10.13801/j.cnki.fhclxb.20220429.002

聚合物改性碳纤维增强混凝土的动态压缩力学性能

doi: 10.13801/j.cnki.fhclxb.20220429.002
基金项目: 国家自然科学基金(51908548);国家人民防空办公室立项课题(RF20SC01J-S0);陕西省高校科协青年人才托举计划项目(20200415)
详细信息
    通讯作者:

    白二雷,博士,副教授,博士生导师,研究方向为防护工程 E-mail:bwxkgy@163.com

  • 中图分类号: TU528

Dynamic compression mechanical properties of polymer modified carbon fiber reinforced concrete

Funds: National Natural Science Foundation of China (51908548); Project Approved by National Civil Air Defense Office (RF20SC01J-S0); Shaanxi University Science and Technology Association Youth Talent Promotion Program (20200415)
  • 摘要: 为探究聚合物改性碳纤维增强混凝土(PMCFRC)的动态压缩力学性能,利用直径Φ100 mm分离式霍普金森压杆(SHPB)试验装置,分别对碳纤维增强混凝土及聚合物体积分数为4vol%、8vol%、12vol%的PMCFRC进行了5组不同气压下的冲击压缩试验,获得了混凝土在不同应变率下的动态应力-应变曲线和破坏形态,分析了应变率和聚合物掺量对PMCFRC动态压缩强度、变形和韧性的影响规律。结果表明:PMCFRC的动态压缩强度、变形和韧性均具有明显的应变率强化效应,聚合物对PMCFRC的动态压缩力学性能既有强化效应,也有劣化效应。随着应变率的增大,PMCFRC的动态抗压强度、动态强度增长因子(DIF)、动态峰值应变、冲击韧性均逐渐增大。随着聚合物掺量的增大,PMCFRC的动态抗压强度、DIF、冲击韧性均先增大后减小,动态峰值应变不断增大。相同应变率水平下,4%PMCFRC的动态抗压强度、冲击韧性最大,破损程度最轻;8%PMCFRC的应变率敏感性最佳,DIF最大时达到1.94,对混凝土强度的增幅最大。聚合物一方面在混凝土基体中发挥着填充、阻裂、增韧作用,另一方面改善碳纤维-混凝土基体界面的粘结性能;聚合物掺量较大时,会在混凝土基体中形成“软夹层”。

     

  • 图  1  碳纤维

    Figure  1.  Carbon fiber

    图  2  可再分散乳胶粉

    Figure  2.  Redispersible latex powder

    图  3  分离式霍普金森压杆(SHPB)试验装置

    Figure  3.  Split Hopkinson pressure bar (SHPB) test device

    图  4  SHPB试验应力波传播示意图

    Figure  4.  Schematic diagram of stress wave propagation in SHPB test

    L—Thickness of specimen; S—Distance of the stress wave transmission; εT(t)—Transmitted stress wave; εR(t)—Reflected stress wave; εI(t)—Incident stress wave; t—Time

    图  5  PMCFRC试件

    Figure  5.  PMCFRC specimen

    图  6  典型波形图

    Figure  6.  Typical waveform

    图  7  PMCFRC的动态应力-应变曲线

    Figure  7.  Dynamic stress-strain curves of PMCFRC

    图  8  PMCFRC的动态压缩破坏形态

    Figure  8.  Dynamic compression failure form of PMCFRC

    图  9  PMCFRC的动态抗压强度

    Figure  9.  Dynamic compressive strength of PMCFRC

    图  10  PMCFRC的静态抗压强度

    Figure  10.  Static compressive strength of PMCFRC

    图  11  PMCFRC的动态强度增长因子(DIF)

    Figure  11.  Dynamic strength increase factor (DIF) of PMCFRC

    图  12  PMCFRC的动态峰值应变

    Figure  12.  Dynamic peak strain of PMCFRC

    图  13  PMCFRC的冲击韧性

    Figure  13.  Impact toughness of PMCFRC

    图  14  PMCFRC的微观形貌

    Figure  14.  Micromorphologies of PMCFRC

    图  15  PMCFRC的孔隙量

    Figure  15.  Pore volume of PMCFRC

    表  1  碳纤维的主要性能指标

    Table  1.   Main performance indicators of carbon fiber

    Diameter/
    µm
    Length/
    mm
    Carbon content/wt%Relative density/(g·cm−3)Tensile modulus/GPaTensile strength/GPaElongation at break/%Resistivity/
    (Ω·cm)
    7.0±0.26≥931.76220-240>3.01.25-1.601.5×10–3
    下载: 导出CSV

    表  2  可再分散乳胶粉的主要性能指标

    Table  2.   Main performance indexes of redispersible latex powder

    ExteriorSolid contentAshBulk density/(g·cm−3)Particle
    size/µm
    Glass transition temperature/℃Minimum film forming temperature/℃
    White, light white powder$ \geqslant $99%(13±2)%400-5501-700
    下载: 导出CSV

    表  3  聚合物改性碳纤维增强混凝土(PMCFRC)配合比

    Table  3.   Mix ratio of polymer modified carbon fiber reinforced concrete (PMCFRC) (kg/m3)

    Specimen
    number
    Carbon
    fiber
    PolymerCementWaterCoarse
    aggregate
    Fine
    aggregate
    DispersantCoalescentDefoamerWater
    reducer
    0.1%CFRC0.83 0.002041005363760.820.000.612.45
    4%PMCFRC 8.170.41
    8%PMCFRC16.330.82
    12%PMCFRC24.501.23
    Notes: CFRC—Carbon fiber reinforced concrete; 0.1%CFRC—CFRC with carbon fiber volume fraction of 0.1vol%; 4%PMCFRC, 8%PMCFRC, 12%PMCFRC—PMCFRC with carbon fiber volume fraction of 0.1vol% and redispersible latex powder volume fractions of 4vol%, 8vol%, 12vol%, respectively.
    下载: 导出CSV

    表  4  PMCFRC的静态抗压冲击压缩试验结果

    Table  4.   Static compression impact compression test results of PMCFRC

    Specimen
    number
    Static
    compressive
    strength/MPa
    Impact air
    pressure/MPa
    Strain rate/s−1Dynamic
    compressive
    strength/MPa
    Dynamic strength
    increase
    factor
    Dynamic
    peak
    strain/10−3
    Impact
    toughness/
    (kJ·m−3)
    0.1%CFRC 34.56 0.20 37.1 44.88 1.30 6.37 168.8
    0.25 53.5 50.26 1.45 7.40 213.1
    0.30 67.9 54.27 1.57 7.79 232.2
    0.35 82.3 57.84 1.67 8.48 267.3
    0.40 94.7 59.71 1.73 8.73 288.8
    4%PMCFRC 38.06 0.20 42.2 53.98 1.42 7.52 257.3
    0.25 60.9 59.71 1.58 8.51 314.6
    0.30 77.3 63.42 1.67 8.96 373.3
    0.35 86.7 66.41 1.74 9.63 425.9
    0.40 107.7 68.64 1.80 10.09 464.9
    8%PMCFRC 35.10 0.20 48.2 52.52 1.50 8.64 243.8
    0.25 61.6 56.78 1.63 9.44 275.6
    0.30 88.4 62.33 1.78 10.09 335.5
    0.35 107.2 65.40 1.86 10.77 390.0
    0.40 123.3 68.21 1.94 11.35 430.0
    12%PMCFRC 31.72 0.20 48.9 46.08 1.45 8.99 210.4
    0.25 70.7 51.73 1.62 9.94 260.0
    0.30 89.7 54.81 1.73 10.71 300.8
    0.35 108.7 57.19 1.80 11.67 323.8
    0.40 116.9 59.24 1.87 11.99 380.5
    下载: 导出CSV
  • [1] 陈宝春, 韦建刚, 苏家战, 等. 超高性能混凝土应用进展[J]. 建筑科学与工程学报, 2019, 36(2):10-20. doi: 10.3969/j.issn.1673-2049.2019.02.003

    CHEN Baochun, WEI Jiangang, SU Jiazhan, et al. Application progress of ultra-high performance concrete[J]. Journal of Building Science and Engineering,2019,36(2):10-20(in Chinese). doi: 10.3969/j.issn.1673-2049.2019.02.003
    [2] ZHU B R, NEMATOLLAHI B, PAN J L, et al. 3D concrete printing of permanent formwork for concrete column construction[J]. Cement and Concrete Composites,2021,121:104039. doi: 10.1016/j.cemconcomp.2021.104039
    [3] 丁道红, 章青. 混凝土缺陷研究综述[J]. 混凝土, 2009(10):16-18, 23.

    DING Daohong, ZHANG Qing. Review of research on concrete defects[J]. Concrete,2009(10):16-18, 23(in Chinese).
    [4] TSIOTSIAS K, PANTAZOPOULOU S J. Bond behavior of high-performance fiber reinforced concrete (HPFRC) under direct tension pullout[J]. Engineering Structures,2021,243:112701. doi: 10.1016/j.engstruct.2021.112701
    [5] MARCELLO C, ELEAZAR C M S, DEANE R, et al. Fracture modeling of fiber reinforced concrete in a multiscale approach[J]. Composites Part B: Engineering,2019,174:106958. doi: 10.1016/j.compositesb.2019.106958
    [6] 高丹盈, 赵亮平, 冯虎, 等. 钢纤维混凝土弯曲韧性及其评价方法[J]. 建筑材料学报, 2014, 17(5):783-789. doi: 10.3969/j.issn.1007-9629.2014.05.006

    GAO Danying, ZHAO Liangping, FENG Hu, et al. Flexural toughness of steel fiber concrete and its evaluation method[J]. Journal of Building Materials,2014,17(5):783-789(in Chinese). doi: 10.3969/j.issn.1007-9629.2014.05.006
    [7] AL-HAMRANI A, ALNAHHAL W. Shear behavior of basalt FRC beams reinforced with basalt FRP bars and glass FRP stirrups: Experimental and analytical investigations[J]. Engineering Structures,2021,242:112612. doi: 10.1016/j.engstruct.2021.112612
    [8] 许金余, 白二雷. 纤维混凝土及其在防护工程中的应用[J]. 空军工程大学学报(自然科学版), 2019, 20(4):1-11.

    XU Jinyu, BAI Erlei. Fiber concrete and its application in protection engineering[J]. Journal of Air Force Engineering University (Natural Science Edition),2019,20(4):1-11(in Chinese).
    [9] 杨健辉, 李潇雅, 叶亚齐, 等. 全轻纤维混凝土的SHPB冲击强度与耗能效应[J]. 振动与冲击, 2020, 39(2):148-153, 177.

    YANG Jianhui, LI Xiaoya, YE Yaqi, et al. SHPB impact strength and energy dissipation effect of all light fiber concrete[J]. Vibration and Shock,2020,39(2):148-153, 177(in Chinese).
    [10] CHEN L J, ZHANG X X, LIU G M. Analysis of dynamic mechanical properties of sprayed fiber-reinforced concrete based on the energy conversion principle[J]. Construction and Building Materials,2020,254:119167. doi: 10.1016/j.conbuildmat.2020.119167
    [11] 杜向琴, 刘志龙. 碳纤维对混凝土力学性能的影响研究[J]. 混凝土, 2018(4):91-94. doi: 10.3969/j.issn.1002-3550.2018.04.023

    DU Xiangqin, LIU Zhilong. Study on the effect of carbon fiber on mechanical properties of concrete[J]. Concrete,2018(4):91-94(in Chinese). doi: 10.3969/j.issn.1002-3550.2018.04.023
    [12] LU S, BAI E L, XU J Y, et al. Research on electromagnetic properties and microwave deicing performance of carbon fiber modified concrete[J]. Construction and Building Materials,2021,286:122868. doi: 10.1016/j.conbuildmat.2021.122868
    [13] 李为民, 许金余, 翟毅, 等. 冲击荷载作用下碳纤维混凝土的力学性能[J]. 土木工程学报, 2009, 42(2):24-30, 38. doi: 10.3321/j.issn:1000-131X.2009.02.004

    LI Weimin, XU Jinyu, ZHAI Yi, et al. Mechanical properties of carbon fiber concrete under impact load[J]. Civil Engi-neering Journal,2009,42(2):24-30, 38(in Chinese). doi: 10.3321/j.issn:1000-131X.2009.02.004
    [14] 白二雷, 许金余, 高志刚. 碳纤维混凝土的动态损伤本构模型[J]. 建筑科学, 2011, 27(11):20-23. doi: 10.3969/j.issn.1002-8528.2011.11.005

    BAI Erlei, XU Jinyu, GAO Zhigang. Dynamic damage constitutive model of carbon fiber concrete[J]. Building Science,2011,27(11):20-23(in Chinese). doi: 10.3969/j.issn.1002-8528.2011.11.005
    [15] WANG Z H, XU J Y, BAI E L, et al. Dielectric model of carbon nanofiber reinforced concrete[J]. Materials,2020,13(21):4869. doi: 10.3390/ma13214869
    [16] 孟欣, 许金余, 吕晓聪, 等. 碳纤维混凝土微波吸热效率的研究[J]. 空军工程大学学报(自然科学版), 2021, 22(2):107-110.

    MENG Xin, XU Jinyu, LU Xiaocong, et al. Research on the microwave heat absorption efficiency of carbon fiber concrete[J]. Journal of Air Force Engineering University (Natural Science Edition),2021,22(2):107-110(in Chinese).
    [17] 王建娥. 碳纤维增强混凝土力学性能及耐久性分析[J]. 四川建材, 2014, 40(1):21-22. doi: 10.3969/j.issn.1672-4011.2014.01.011

    WANG Jian'e. Analysis of the mechanical properties and durability of carbon fiber reinforced concrete[J]. Sichuan Building Materials,2014,40(1):21-22(in Chinese). doi: 10.3969/j.issn.1672-4011.2014.01.011
    [18] 周乐, 王晓初, 刘洪涛. 碳纤维混凝土力学性能与破坏形态试验研究[J]. 工程力学, 2013, 30(S1):226-231.

    ZHOU Le, WANG Xiaochu, LIU Hongtao. Experimental study on the mechanical properties and failure modes of carbon fiber concrete[J]. Engineering Mechanics,2013,30(S1):226-231(in Chinese).
    [19] ZHANG H, WANG L, ZHENG K, et al. Research on compressive impact dynamic behavior and constitutive model of polypropylene fiber reinforced concrete[J]. Construction and Building Materials,2018,187:584-595. doi: 10.1016/j.conbuildmat.2018.07.164
    [20] AHMED G B, EHAB F E. Ductility and performance assessment of glass fiber-reinforced polymer-reinforced concrete deep beams incorporating cementitious composites reinforced with basalt fiber pellets[J]. ACI Structural Journal,2021,118(4):83-95.
    [21] LV Y, ZHANG Y Q. Compression properties of basalt fiber-reinforced polymer confined coconut shell concrete[J]. Journal of Materials in Civil Engineering,2021,33(7):04021145.
    [22] 常森, 许金余, 杨宁. 新型聚合物乳胶粉对碳纤维增强混凝土力学性能的影响[J]. 功能材料, 2019, 50(11):11161-11165. doi: 10.3969/j.issn.1001-9731.2019.11.027

    CHANG Sen, XU Jinyu, YANG Ning. Effect of new polymer latex powder on the mechanical properties of carbon fiber reinforced concrete[J]. Functional Materials,2019,50(11):11161-11165(in Chinese). doi: 10.3969/j.issn.1001-9731.2019.11.027
    [23] HUANG H, PANG H, HUANG J H, et al. Synthesis and characterization of ground glass fiber reinforced polyurethane-based polymer concrete as a cementitious runway repair material[J]. Construction and Building Materials,2020,242:117221. doi: 10.1016/j.conbuildmat.2019.117221
    [24] 中华人民共和国住房和城乡建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2002.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods for mechanical properties of ordinary concrete: GB/T 50081—2002[S]. Beijing: China Building Industry Press, 2002(in Chinese).
    [25] 许金余, 李赞成, 罗鑫, 等. 橡胶混凝土的静动压缩强度特性的对比研究[J]. 建筑材料学报, 2014, 17(6):1015-1019, 1035. doi: 10.3969/j.issn.1007-9629.2014.06.013

    XU Jinyu, LI Zancheng, LUO Xin, et al. Comparative study on static and dynamic compressive strength properties of rubberized concrete[J]. Journal of Building Materials,2014,17(6):1015-1019, 1035(in Chinese). doi: 10.3969/j.issn.1007-9629.2014.06.013
    [26] WANG Z H, BAI E L, XU J Y, et al. Effect of nano-SiO2 and nano-CaCO3 on the static and dynamic properties of concrete[J]. Scientific Reports,2022,12(1):907. doi: 10.1038/s41598-021-04632-7
    [27] WAHID F, ALLAN M, HONG S W, et al. Optimal design for epoxy polymer concrete based on mechanical properties and durability aspects[J]. Construction and Building Materials,2020,232:117229. doi: 10.1016/j.conbuildmat.2019.117229
    [28] 江润东, 徐晓沐, 毛继泽, 等. 我国纤维聚合物混凝土的研究现状[J]. 化学与黏合, 2017, 39(3):205-210.

    JIANG Rundong, XU Xiaomu, MAO Jize, et al. Research status of fiber polymer concrete in my country[J]. Che-mistry and Adhesion,2017,39(3):205-210(in Chinese).
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  689
  • HTML全文浏览量:  339
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-24
  • 修回日期:  2022-04-14
  • 录用日期:  2022-04-23
  • 网络出版日期:  2022-04-29
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回