留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚合物改性碳纤维增强混凝土的动态压缩力学性能

王志航 白二雷 许金余 刘高杰 杨宁

王志航, 白二雷, 许金余, 等. 聚合物改性碳纤维增强混凝土的动态压缩力学性能[J]. 复合材料学报, 2022, 40(0): 1-12
引用本文: 王志航, 白二雷, 许金余, 等. 聚合物改性碳纤维增强混凝土的动态压缩力学性能[J]. 复合材料学报, 2022, 40(0): 1-12
Zhihang WANG, Erlei BAI, Jinyu XU, Gaojie LIU, Ning YANG. Dynamic compression mechanical properties of polymer modified carbon fiber reinforced concrete[J]. Acta Materiae Compositae Sinica.
Citation: Zhihang WANG, Erlei BAI, Jinyu XU, Gaojie LIU, Ning YANG. Dynamic compression mechanical properties of polymer modified carbon fiber reinforced concrete[J]. Acta Materiae Compositae Sinica.

聚合物改性碳纤维增强混凝土的动态压缩力学性能

基金项目: 国家自然科学基金(51908548);国家人民防空办公室立项课题(RF20 SC01 J-S0);陕西省高校科协青年人才托举计划项目(20200415)
详细信息
    通讯作者:

    白二雷,博士,副教授,研究方向为防护工程 E-mail:bwxkgy@163.com

  • 中图分类号: TU528

Dynamic compression mechanical properties of polymer modified carbon fiber reinforced concrete

  • 摘要: 为探究聚合物改性碳纤维增强混凝土(PMCFRC)的动态压缩力学性能,利用Φ100mm分离式霍普金森压杆(SHPB)试验装置,分别对碳纤维增强混凝土及聚合物体积分数为4vol%、8vol %、12vol %的PMCFRC进行了5组不同气压下的冲击压缩试验,获得了混凝土在不同应变率下的动态应力-应变曲线和破坏形态,分析了应变率和聚合物掺量对PMCFRC动态压缩强度、变形和韧性的影响规律。结果表明:PMCFRC的动态压缩强度、变形和韧性均具有明显的应变率强化效应,聚合物对PMCFRC的动态压缩力学性能既有强化效应,也有劣化效应。随着应变率的增大,PMCFRC的动态抗压强度、动态强度增长因子(DIF)、动态峰值应变、冲击韧性均逐渐增大。随着聚合物掺量的增大,PMCFRC的动态抗压强度、DIF、冲击韧性均先增大后减小,动态峰值应变不断增大。相同应变率水平下,4%PMCFRC的动态抗压强度、冲击韧性最大,破损程度最轻;8%PMCFRC的应变率敏感性最佳,DIF最大时达到1.94,对混凝土强度的增幅最大。聚合物一方面在混凝土基体中发挥着填充、阻裂、增韧作用,另一方面改善碳纤维-混凝土基体界面的粘结性能;聚合物掺量较大时,会在混凝土基体中形成“软夹层”。

     

  • 图  1  碳纤维

    Figure  1.  Carbon fiber

    图  2  可再分散乳胶粉

    Figure  2.  Redispersible latex powder

    图  3  SHPB试验装置

    Figure  3.  SHPB test device

    图  4  SHPB试验应力波传播示意图

    Figure  4.  Schematic diagram of stress wave propagation in SHPB test

    图  5  PMCFRC试件

    Figure  5.  PMCFRC specimen

    图  6  典型波形图

    Figure  6.  Typical waveform

    图  7  PMCFRC的动态应力-应变曲线

    Figure  7.  Dynamic stress-strain curves of PMCFR

    图  8  PMCFRC的动态压缩破坏形态

    Figure  8.  Dynamic compression failure form of PMCFRC

    图  9  PMCFRC的动态抗压强度

    Figure  9.  Dynamic compressive strength of PMCFRC

    图  10  PMCFRC的静态抗压强度

    Figure  10.  Static compressive strength of PMCFRC

    图  11  PMCFRC的动态强度增长因子(DIF)

    Figure  11.  Dynamic strength increase factor (DIF) of PMCFRC

    图  12  PMCFRC的动态峰值应变

    Figure  12.  Dynamic peak strain of PMCFRC

    图  13  PMCFRC的冲击韧性

    Figure  13.  Impact toughness of PMCFRC

    图  14  PMCFRC的微观形貌

    Figure  14.  Micromorphologies of PMCFRC

    图  15  PMCFRC的孔隙量

    Figure  15.  Pore volume of PMCFRC

    表  1  碳纤维的主要性能指标

    Table  1.   The main performance indicators of carbon fiber

    Diameter
    /
    µm
    Length
    /
    mm
    Carbon content/wt%Relative density/(g·cm−3)Tensile modulus/GPaTensile strength/GPaElongation at break/%Resistivity/
    (Ω·cm)
    7.0±0.26≥931.76220-240>3.01.25-1.601.5×10-3
    下载: 导出CSV

    表  2  可再分散乳胶粉的主要性能指标

    Table  2.   Main performance indexes of redispersible latex powder

    ExteriorSolid contentAshBulk density/(g·cm−3)$ \mathrm{k}\mathrm{g}\bullet {\mathrm{m}}^{-3} $Particle
    size/µm
    Glass transition temperature/℃Minimum film forming temperature/℃
    White, light white powder$ \ge $99%13%±2%400-5501-700
    下载: 导出CSV

    表  3  聚合物改性碳纤维增强混凝土(PMCFRC)配合比(kg/m3)

    Table  3.   mix ratio of polymer modified carbon fiber reinforced concrete (PMCFRC) (kg/m3)

    Specimen
    number
    Carbon
    fiber
    PolymerCementWaterCoarse
    aggregate
    Fine
    aggregate
    DispersantCoalescentDefoamerWater
    reducer
    0.1%CFRC0.8302041005363760.8200.612.45
    4%PMCFRC8.170.41
    8%PMCFRC16.330.82
    12%PMCFRC24.501.23
    Notes: CFRC—Carbon fiber reinforced concrete; PMCFRC—polymer modified carbon fiber reinforced concrete; 0.1%CFRC—CFRC with carbon fiber volume fraction of 0.1 vol%; 4%PMCFRC, 8%PMCFRC, 12%PMCFRC—PMCFRC with carbon fiber volume fraction of 0.1 vol% and redispersible latex powder volume fractions of 4 vol%, 8 vol%, 12 vol%, respectively.
    下载: 导出CSV

    表  4  PMCFRC的静态抗压、冲击压缩试验结果

    Table  4.   Static compression impact compression test results of PMCFRC

    Specimen
    number
    Static
    compressive
    strength/MPa
    Impact air
    pressure/MPa
    Strain rate/s−1Dynamic
    compressive
    strength/MPa
    Dynamic strength
    increase
    factor
    Dynamic
    peak
    strain/10−3
    Impact
    toughness /
    (kJ·m−3)
    0.1%CFRC34.560.2037.144.881.306.37168.8
    0.2553.550.261.457.4213.1
    0.3067.954.271.577.79232.2
    0.3582.357.841.678.48267.3
    0.4094.759.711.738.73288.8
    4%PMCFRC38.060.2042.253.981.427.52257.3
    0.2560.959.711.588.51314.6
    0.3077.363.421.678.96373.3
    0.3586.766.411.749.63425.9
    0.40107.768.641.8010.09464.9
    8%PMCFRC35.100.2048.252.521.508.64243.8
    0.2561.656.781.639.44275.6
    0.3088.462.331.7810.09335.5
    0.35107.265.41.8610.77390.0
    0.40123.368.211.9411.35430.0
    12%PMCFRC31.720.2048.946.081.458.99210.4
    0.2570.751.731.629.94260.0
    0.3089.754.811.7310.71300.8
    0.35108.757.191.8011.67323.8
    0.40116.959.241.8711.99380.5
    下载: 导出CSV
  • [1] 陈宝春, 韦建刚, 苏家战, 等. 超高性能混凝土应用进展[J]. 建筑科学与工程学报, 2019, 36(2):10-20. doi: 10.3969/j.issn.1673-2049.2019.02.003

    CHEN Baochun, WEI Jiangang, SU Jiazhan, et al. Application progress of ultra-high performance concrete[J]. Journal of Building Science and Engineering,2019,36(2):10-20(in Chinese). doi: 10.3969/j.issn.1673-2049.2019.02.003
    [2] ZHU B R, NEMATOLLAHI B, PAN J L, et al. 3 D concrete printing of permanent formwork for concrete column construction[J]. Cement and Concrete Composites,2021,121:104039. doi: 10.1016/j.cemconcomp.2021.104039
    [3] 丁道红, 章青. 混凝土缺陷研究综述[J]. 混凝土, 2009(10):16-18+23.

    DING Daohong, ZHANG Qing. Review of research on concrete defects[J]. Concrete,2009(10):16-18+23(in Chinese).
    [4] TSIOTSIAS K, PANTAZOPOULOU S J. Bond behavior of high-performance fiber reinforced concrete (HPFRC) under direct tension pullout[J]. Engineering Structures,2021,243:112701. doi: 10.1016/j.engstruct.2021.112701
    [5] MARCELLO C, ELEAZAR C M S, DEANE R, et al. Fracture modeling of fiber reinforced concrete in a multiscale approach[J]. Composites Part B,2019,174:106958. doi: 10.1016/j.compositesb.2019.106958
    [6] 高丹盈, 赵亮平, 冯虎, 等. 钢纤维混凝土弯曲韧性及其评价方法[J]. 建筑材料学报, 2014, 17(5):783-789. doi: 10.3969/j.issn.1007-9629.2014.05.006

    GAO Danying, ZHAO Liangping, FENG Hu, et al. Flexural toughness of steel fiber concrete and its evaluation method[J]. Journal of Building Materials,2014,17(5):783-789(in Chinese). doi: 10.3969/j.issn.1007-9629.2014.05.006
    [7] AL-HAMRANI A, ALNAHHAL W. Shear behavior of basalt FRC beams reinforced with basalt FRP bars and glass FRP stirrups: Experimental and analytical investigations[J]. Engineering Structures,2021,242:112612. doi: 10.1016/j.engstruct.2021.112612
    [8] 许金余, 白二雷. 纤维混凝土及其在防护工程中的应用[J]. 空军工程大学学报(自然科学版), 2019, 20(4):1-11.

    XU Jinyu, BAI Erlei. Fiber concrete and its application in protection engineering[J]. Journal of Air Force Engineering University (Natural Science Edition),2019,20(4):1-11(in Chinese).
    [9] 杨健辉, 李潇雅, 叶亚齐, 等. 全轻纤维混凝土的SHPB冲击强度与耗能效应[J]. 振动与冲击, 2020, 39(2):148-153+177.

    YANG Jianhui, LI Xiaoya, YE Yaqi, et al. SHPB impact strength and energy dissipation effect of all light fiber concrete[J]. Vibration and Shock,2020,39(2):148-153+177(in Chinese).
    [10] CHEN L J, ZHANG X X, LIU G M. Analysis of dynamic mechanical properties of sprayed fiber-reinforced concrete based on the energy conversion principle[J]. Construction and Building Materials,2020,254:119167. doi: 10.1016/j.conbuildmat.2020.119167
    [11] 杜向琴, 刘志龙. 碳纤维对混凝土力学性能的影响研究[J]. 混凝土, 2018(04):91-94. doi: 10.3969/j.issn.1002-3550.2018.04.023

    DU Xiangqin, LIU Zhilong. Study on the effect of carbon fiber on mechanical properties of concrete[J]. Concrete,2018(04):91-94(in Chinese). doi: 10.3969/j.issn.1002-3550.2018.04.023
    [12] LU S, BAI E L, XU J Y, et al. Research on electromagnetic properties and microwave deicing performance of carbon fiber modified concrete[J]. Construction and Building Materials,2021,286:122868. doi: 10.1016/j.conbuildmat.2021.122868
    [13] 李为民, 许金余, 翟毅, 等. 冲击荷载作用下碳纤维混凝土的力学性能[J]. 土木工程学报, 2009, 42(2):24-30+38. doi: 10.3321/j.issn:1000-131X.2009.02.004

    LI Weimin, XU Jinyu, ZHAI Yi, et al. Mechanical properties of carbon fiber concrete under impact load[J]. Civil Engineering Journal,2009,42(2):24-30+38(in Chinese). doi: 10.3321/j.issn:1000-131X.2009.02.004
    [14] 白二雷, 许金余, 高志刚. 碳纤维混凝土的动态损伤本构模型[J]. 建筑科学, 2011, 27(11):20-23. doi: 10.3969/j.issn.1002-8528.2011.11.005

    BAI Erlei, XU Jinyu, GAO Zhigang. Dynamic damage constitutive model of carbon fiber concrete[J]. Building Science,2011,27(11):20-23(in Chinese). doi: 10.3969/j.issn.1002-8528.2011.11.005
    [15] WANG Z H, XU J Y, BAI E L, et al. Dielectric Model of Carbon Nanofiber Reinforced Concrete[J]. Materials,2020,13(21):4869. doi: 10.3390/ma13214869
    [16] 孟欣, 许金余, 吕晓聪, 等. 碳纤维混凝土微波吸热效率的研究[J]. 空军工程大学学报(自然科学版), 2021, 22(2):107-110.

    MENG Xin, XU Jinyu, LU Xiaocong, et al. Research on the microwave heat absorption efficiency of carbon fiber concrete[J]. Journal of Air Force Engineering University (Natural Science Edition),2021,22(2):107-110(in Chinese).
    [17] 王建娥. 碳纤维增强混凝土力学性能及耐久性分析[J]. 四川建材, 2014, 40(1):21-22. doi: 10.3969/j.issn.1672-4011.2014.01.011

    WANG Jian'e. Analysis of the mechanical properties and durability of carbon fiber reinforced concrete[J]. Sichuan Building Materials,2014,40(1):21-22(in Chinese). doi: 10.3969/j.issn.1672-4011.2014.01.011
    [18] 周乐, 王晓初, 刘洪涛. 碳纤维混凝土力学性能与破坏形态试验研究[J]. 工程力学, 2013, 30(S1):226-231.

    ZHOU Le, WANG Xiaochu, LIU Hongtao. Experimental study on the mechanical properties and failure modes of carbon fiber concrete[J]. Engineering Mechanics,2013,30(S1):226-231(in Chinese).
    [19] ZHANG H, WANG L, ZHENG K, et al. Research on compressive impact dynamic behavior and constitutive model of polypropylene fiber reinforced concrete[J]. Construction and Building Materials,2018,187:584-595. doi: 10.1016/j.conbuildmat.2018.07.164
    [20] AHMED G B, EHAB F E. Ductility and performance assessment of glass fiber-reinforced polymer-reinforced concrete deep beams incorporating cementitious composites reinforced with basalt fiber pellets[J]. ACI Structural Journal,2021,118(4):83-95.
    [21] LV Y, ZHANG Y Q. Compression properties of basalt fiber-reinforced polymer confined coconut shell concrete[J]. Journal of Materials in Civil Engineering,2021,33(7):04021145.
    [22] 常森, 许金余, 杨宁. 新型聚合物乳胶粉对碳纤维增强混凝土力学性能的影响[J]. 功能材料, 2019, 50(11):11161-11165. doi: 10.3969/j.issn.1001-9731.2019.11.027

    CHANG Sen, XU Jinyu, YANG Ning. Effect of new polymer latex powder on the mechanical properties of carbon fiber reinforced concrete[J]. Functional Materials,2019,50(11):11161-11165(in Chinese). doi: 10.3969/j.issn.1001-9731.2019.11.027
    [23] HUANG H, PANG H, HUANG J H, et al. Synthesis and characterization of ground glass fiber reinforced polyurethane-based polymer concrete as a cementitious runway repair material[J]. Construction and Building Materials,2020,242:117221. doi: 10.1016/j.conbuildmat.2019.117221
    [24] GB 50081-2002 普通混凝土力学性能试验方法标准[S]. 北京. 中国建筑工业出版社. 2002. (in Chinese).

    GB 50081-2002 Standard for test methods for mechanical properties of ordinary concrete [S]. Beijing. China Building Industry Press. 2002.
    [25] 许金余, 李赞成, 罗鑫, et al. 橡胶混凝土的静动压缩强度特性的对比研究[J]. 建筑材料学报, 2014, 17(6):1015-1019+1035. doi: 10.3969/j.issn.1007-9629.2014.06.013

    XU Jinyu, LI Yanchang, LUO Xin, et al. Comparative study on static and dynamic compressive strength properties of rubberized concrete[J]. Journal of Building Materials,2014,17(6):1015-1019+1035(in Chinese). doi: 10.3969/j.issn.1007-9629.2014.06.013
    [26] WANG Zhi-Hang, BAI Er-Lei, XU Jin-Yu, et al. Effect of nano-SiO2 and nano-CaCO3 on the static and dynamic properties of concrete[J]. Scientific Reports,2022,12(1):907. doi: 10.1038/s41598-021-04632-7
    [27] WAHID F, ALLAN M, HONG S W, et al. Optimal design for epoxy polymer concrete based on mechanical properties and durability aspects[J]. Construction and Building Materials,2020,232:117229. doi: 10.1016/j.conbuildmat.2019.117229
    [28] 江润东, 徐晓沐, 毛继泽, 等. 我国纤维聚合物混凝土的研究现状[J]. 化学与黏合, 2017, 39(03):205-210.

    JIANG Rundong, XU Xiaomu, MAO Jize, et al. Research status of fiber polymer concrete in my country[J]. Chemistry and Adhesion,2017,39(03):205-210(in Chinese).
  • 加载中
计量
  • 文章访问数:  64
  • HTML全文浏览量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-24
  • 录用日期:  2022-04-23
  • 修回日期:  2022-04-14
  • 网络出版日期:  2022-05-11

目录

    /

    返回文章
    返回