Improved energy storage performance of PMMA/PVDF blend polymer matrix composites by doping modification
-
摘要: 薄膜电容器在高压输电换流站、新能源汽车电驱动控制器、电磁武器脉冲功率电源等电气工程和电子器件领域具有重要应用。当前薄膜电容器正向着高能量密度、耐电压、耐高温等技术方向发展,对电容薄膜的电气性能提出了更高要求。本文选择铁电聚偏氟乙烯(PVDF)和聚甲基丙烯酸甲酯 (PMMA)共混物作为储能聚合物基体,以具有高介电常数的纳米粒子BaTiO3 (BT)和具有高电子亲和能的有机分子半导体[6, 6]-苯基C61丁酸甲酯(PCBM)作为掺杂相,综合利用BT的高介电特性以及PCBM的捕获电荷能力,提高复合介质的极化强度与击穿场强,显著改善储能性能。研究表明,单掺杂BT时,掺杂含量为3wt%时复合介质综合性能最优;在此基础上,随着PCBM掺杂含量增大其储能密度和充放电效率提升明显。当PCBM掺杂含量为2wt%时,含有3wt%BT的PMMA/PVDF复合介质具有优异的储能性能,当电场为579.67 kV/mm时,放电能量密度达到15.60 J/cm3且充放电效率为75.30%。本文首次提出基于少量无机高介电协同有机分子半导体功能填料的聚合物薄膜储能性能改性研究,通过加入少量的BT,既避免了因BT含量过高而导致的绝缘性能下降问题,又保证了BT粒子对复合介质介电常数和极化性能的提升。同时,为了进一步改善因低介电常数基体与高介电常数BT颗粒之间的电场畸变所导致的击穿强度下降问题,考虑在复合介质中加入一定量的PCBM,利用PCBM强大的电子亲和能力,在复合介质中构筑深陷阱以捕获和束缚载流子,抑制载流子的迁移,提升复合介质的击穿场强,从而综合提升了复合介质的储能性能,这为开发储能性能优异的聚合物复合介质提供了一种新思路。Abstract: Thin film capacitors have important applications in the fields of electrical engineering and electronic devices such as high voltage transmission converter stations, new energy vehicle electric drive controllers, electromagnetic weapon pulse power supply and so on. At present, thin-film capacitors are developing towards the technical direction of high energy density, voltage resistance, high temperature resistance and so on, which put forward higher requirements for the electrical performance of capacitor films. In this study, ferroelectric polyvinylidene fluoride (PVDF) and polymethyl methacrylate (PMMA) blends were selected as the energy storage polymer matrix, and BaTiO3 (BT) nanoparticles with high dielectric constant and organic molecular semiconductor [6, 6]-phenyl C61 methyl butyrate (PCBM) with high electron affinity were used as the doping phase. The high dielectric properties of BT and the ability of PCBM to capture charge are comprehensively utilized to improve the polarization strength and breakdown field strength of the composite medium and significantly improve the energy storage performance. The results show that when the doping content is 3wt%, the composite media has the best comprehensive performance. On this basis, with the increase of PCBM doping content, its energy storage density and charge-discharge efficiency improved significantly. When PCBM doping content is 2wt%, PMMA/PVDF composite medium containing 3wt%BT has excellent energy storage performance. When the electric field is 579.67 kV/mm, the discharge energy density reaches 15.60 J/cm3 and the charge-discharge efficiency is 75.30%. First proposed in this paper, based on a small amount of inorganic high dielectric organic molecules together semiconductor filler modified polymer film energy storage performance of the function, by adding a small amount of BT particles, avoids insulation performance degradation caused by the high content of BT, and ensures the BT particle on the properties of composite dielectric permittivity and polarization. At the same time, in order to further improve due to the low dielectric constant substrate with high dielectric constant BT particles between the electric field distortion caused by the breakdown strength degradation, consider joining a certain amount of PCBM in a composite medium, use PCBM electron affinity ability, strong in composite medium build deep traps to capture and carrier, inhibit the transfer of carrier.The breakdown field strength of the composite medium is improved, so as to comprehensively improve the energy storage performance of the composite medium, which provides a new idea for the development of polymer composite medium with excellent energy storage performance.
-
图 6 PMMA/PVDF-xwt%-BT共混复合薄膜的极化性能:(a) 电位移-电场强度(D-E)曲线;(b) 最大极化(Dmax)和剩余极化(Dr)的柱状图分布
Figure 6. Polarization properties of PMMA/PVDF-xwt%-BT blend composite films: (a) Electric displacement-electric field intensity (D-E) curves; (b) Histogram distribution of maximum polarization (Dmax) and residual polarization (Dr)
图 7 PMMA/PVDF-xwt%-BT共混复合薄膜的储能性能:(a) 储能密度(Ue)和储能效率(η)变化规律;(b) 储能密度和储能效率的柱状图分布
Figure 7. Energy storage performance of PMMA/PVDF-xwt%-BT blend composite film: (a) Changing rule of energy storage density (Ue) and energy storage efficiency (η); (b) Histogram distribution of energy storage density and energy storage efficiency
图 13 PMMA-ywt%PCBM@PVDF-3wt%BT共混复合薄膜的储能性能:(a) 储能密度和储能效率变化规律;(b) 储能密度和储能效率的柱状图分布
Figure 13. Energy storage performance of PMMA-ywt%PCBM@PVDF-3wt%BT blend composite films: (a) Energy storage density and energy storage efficiency; (b) Histogram distribution of energy storage density and energy storage efficiency
表 1 具有不同BT含量的PMMA/PVDF-xwt%-BT共混复合薄膜的电学性能参数
Table 1. Electrical properties of PMMA/PVDF-xwt%-BT blended composite films with different BT contents
100 Hz Sample ε tanδ Eb/(kV·mm−1) β PMMA/PVDF 5.50 0.0586 593.39 12.55 PMMA/PVDF-1wt%-BT 5.80 0.0531 554.76 12.04 PMMA/PVDF-2wt%-BT 6.00 0.0543 522.67 10.20 PMMA/PVDF-3wt%-BT 6.37 0.0584 511.96 11.51 PMMA/PVDF-4wt%-BT 6.90 0.0601 434.52 9.84 Notes: ε—Dielectric constant; tanδ—Dielectric loss; Eb—Breakdown electric field; β—Shape parameter. 表 2 不同PCBM含量的PMMA-ywt%PCBM@PVDF-3wt%BT共混复合薄膜的电学性能参数
Table 2. Electrical properties of PMMA-ywt%PCBM@PVDF-3wt%BT blends with different PCBM contents
100 Hz Sample ε tanδ Eb/(kV·mm−1) β PMMA/PVDF-3wt%-BT 6.37 0.0584 511.96 11.51 PMMA-1wt%PCBM@PVDF-3wt%BT 6.57 0.0620 531.70 10.98 PMMA-1.5wt%PCBM@PVDF-3wt%BT 6.78 0.0585 563.83 10.02 PMMA-2wt%PCBM@PVDF-3wt%BT 7.06 0.0546 579.67 11.17 PMMA-2.5wt%PCBM@PVDF-3wt%BT 7.29 0.0653 490.94 10.99 -
[1] PRATEEK, THAKUR V K, GUPTA R K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: Synthesis, dielectric properties, and future aspects[J]. Chemical Reviews,2016,116(7):4260-4317. doi: 10.1021/acs.chemrev.5b00495 [2] HUANG X, SUN B, ZHU Y, et al. High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications[J]. Progress in Materials Science,2019,100:187-225. doi: 10.1016/j.pmatsci.2018.10.003 [3] TAN D Q. The search for enhanced dielectric strength of polymer-based dielectrics: A focused review on polymer nanocomposites[J]. Journal of Applied Polymer Science,2020,137(33):49379. doi: 10.1002/app.49379 [4] ZHENG M S, ZHENG Y T, ZHA J W, et al. Improved dielectric, tensile and energy storage properties of surface rubberized BaTiO3/polypropylene nanocomposites[J]. Nano Energy,2018,48:144-151. doi: 10.1016/j.nanoen.2018.03.049 [5] ZHANG Y, ZHANG C, FENG Y, et al. Energy storage enhancement of P(VDF-TrFE-CFE)-based composites with double-shell structured BZCT nanofibers of parallel and orthogonal configurations[J]. Nano Energy,2019,66:104195. doi: 10.1016/j.nanoen.2019.104195 [6] ZHANG Y, ZHANG C, FENG Y, et al. Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction[J]. Nano Energy,2019,56:138-150. doi: 10.1016/j.nanoen.2018.11.044 [7] LIU G, FENG Y, ZHANG T, et al. High-temperature all-organic energy storage dielectric with the performance of self-adjusting electric field distribution[J]. Journal of Materials Chemistry A,2021,9(30):16384-16394. doi: 10.1039/D1TA02668B [8] WANG Z, WANG T, WANG C, et al. Poly(vinylidene fluoride) flexible nanocomposite films with dopamine-coated giant dielectric ceramic nanopowders, Ba(Fe0.5Ta0.5)O3, for high energy-storage density at low electric field[J]. ACS Applied Materials & Interfaces,2017,9(34):29130-29139. doi: 10.1021/acsami.7b08664 [9] CHU B, ZHOU Y. Energy storage properties of PVDF terpolymer/PMMA blends[J]. High Voltage,2016,1(4):171-174. doi: 10.1049/hve.2016.0062 [10] CHI Q, ZHOU Y, YIN C, et al. A blended binary composite of poly(vinylidene fluoride) and poly(methyl methacrylate) exhibiting excellent energy storage performances[J]. Journal of Materials Chemistry C,2019,7(45):14148-14158. doi: 10.1039/C9TC04695J [11] THAKUR Y, LEAN M H, ZHANG Q M. Reducing conduction losses in high energy density polymer using nanocomposites[J]. Applied Physics Letters,2017,110(12):122905. doi: 10.1063/1.4979040 [12] MACHUI F, LANGNER S, ZHU X, et al. Determination of the P3 HT:PCBM solubility parameters via a binary solvent gradient method: Impact of solubility on the photovoltaic performance[J]. Solar Energy Materials and Solar Cells,2012,100:138-146. doi: 10.1016/j.solmat.2012.01.005 [13] ZHANG C, ZHANG T, FENG M, et al. Significantly improved energy storage performance of PVDF ferroelectric films by blending PMMA and filling PCBM[J]. ACS Sustainable Chemistry & Engineering,2021,9(48):16291-16303. [14] ZHANG Y, CHI Q, LIU L, et al. PVDF-based dielectric composite films with excellent energy storage performances by design of nanofibers composition gradient structure[J]. ACS Applied Energy Materials,2018,1(11):6320-6329. doi: 10.1021/acsaem.8b01306 [15] SANG X, LI X, ZHANG D, et al. Improved dielectric properties and energy-storage densities of BaTiO3-doped PVDF composites by heat treatment and surface modification of BaTiO3[J]. Journal of Physics D: Applied Physics,2022,55(21):215501. doi: 10.1088/1361-6463/ac4942 [16] CAI X, LEI T, SUN D, et al. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR[J]. RSC Advances,2017,7(25):15382-15389. doi: 10.1039/C7RA01267E [17] MIAO B, LIU J, ZHANG X, et al. Ferroelectric relaxation dependence of poly(vinylidene fluoride-co-trifluoroethylene) on frequency and temperature after grafting with poly(methyl methacrylate)[J]. RSC Advances,2016,6(87):84426-84438. doi: 10.1039/C6RA17977K [18] LI J, MENG Q, LI W, et al. Influence of crystalline properties on the dielectric and energy storage properties of poly(vinylidene fluoride)[J]. Journal of Applied Polymer Science,2011,122(3):1659-1668. doi: 10.1002/app.34020 [19] ELASHMAWI I S, HAKEEM N A. Effect of PMMA addition on characterization and morphology of PVDF[J]. Polymer Engineering & Science,2008,48(5):895-901. [20] SU J, ZHANG J. Recent development on modification of synthesized barium titanate (BaTiO3) and polymer/BaTiO3 dielectric composites[J]. Journal of Materials Science: Materials in Electronics,2018,30(3):1957-1975. [21] CHI Q, MA T, ZHANG Y, et al. Significantly enhanced energy storage density for poly(vinylidene fluoride) composites by induced PDA-coated 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanofibers[J]. Journal of Materials Chemistry A,2017,5(32):16757-16766. doi: 10.1039/C7TA03897F [22] ZHU L, WANG Q. Novel ferroelectric polymers for high energy density and low loss dielectrics[J]. Macromolecules,2012,45(7):2937-2954. doi: 10.1021/ma2024057 [23] SUN L, SHI Z, WANG H, et al. Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide-BaTiO3/P(VDF-HFP) composites[J]. Journal of Materials Chemistry A,2020,8(11):5750-5757. doi: 10.1039/D0TA00903B [24] RU J, MIN D, LANAGAN M, et al. Energy storage properties of polyimide/BaTiO3 nanocomposite films and their breakdown mechanism in a wide content range[J]. Applied Physics Letters,2019,115(21):213901. doi: 10.1063/1.5115766 [25] LI Y, HO J, WANG J, et al. Understanding nonlinear dielectric properties in a biaxially oriented poly(vinylidene fluoride) film at both low and high electric fields[J]. ACS Applied Materials & Interfaces,2016,8(1):455-465. doi: 10.1021/acsami.5b09368 [26] YAO L, PAN Z, ZHAI J, et al. High-energy-density with polymer nanocomposites containing of SrTiO3 nanofibers for capacitor application[J]. Composites Part A: Applied Science and Manufacturing,2018,109:48-54. doi: 10.1016/j.compositesa.2018.02.040 [27] MARWAT M A, MA W, FAN P, et al. Ultrahigh energy density and thermal stability in sandwich-structured nanocomposites with dopamine@Ag@BaTiO3[J]. Energy Storage Materials,2020,31:492-504. doi: 10.1016/j.ensm.2020.06.030 [28] FENG Y, WU Y, XIE Y, et al. Tunable permittivity in polymer composites filled with Si-based semiconductors by regulating induced polarization[J]. Materials Science in Semiconductor Processing,2017,61:63-70. doi: 10.1016/j.mssp.2016.12.029 [29] YUAN C, ZHOU Y, ZHU Y, et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage[J]. Nature Communications,2020,11(1):3919. doi: 10.1038/s41467-020-17760-x [30] ARKHIPOV V I, REYNAERT J, JIN Y D, et al. The effect of deep traps on carrier hopping in disordered organic materials[J]. Synthetic Metals,2003,138(1-2):209-212. doi: 10.1016/S0379-6779(02)01267-5 [31] NENASHEV A V, VALKOVSKII V V, OELERICH J O, et al. Release of carriers from traps enhanced by hopping[J]. Physical Review B,2018,98(15):155207. doi: 10.1103/PhysRevB.98.155207 -

计量
- 文章访问数: 373
- HTML全文浏览量: 234
- 被引次数: 0