留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺杂改性PMMA/PVDF共混聚合物基复合介质的储能性能提升

张昌海 闫炜东 张统钦 张天栋 迟庆国 刘献礼

张昌海, 闫炜东, 张统钦, 等. 掺杂改性PMMA/PVDF共混聚合物基复合介质的储能性能提升[J]. 复合材料学报, 2023, 40(7): 3950-3963. doi: 10.13801/j.cnki.fhclxb.20220913.004
引用本文: 张昌海, 闫炜东, 张统钦, 等. 掺杂改性PMMA/PVDF共混聚合物基复合介质的储能性能提升[J]. 复合材料学报, 2023, 40(7): 3950-3963. doi: 10.13801/j.cnki.fhclxb.20220913.004
ZHANG Changhai, YAN Weidong, ZHANG Tongqin, et al. Improved energy storage performance of PMMA/PVDF blend polymer matrix composites by doping modification[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3950-3963. doi: 10.13801/j.cnki.fhclxb.20220913.004
Citation: ZHANG Changhai, YAN Weidong, ZHANG Tongqin, et al. Improved energy storage performance of PMMA/PVDF blend polymer matrix composites by doping modification[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3950-3963. doi: 10.13801/j.cnki.fhclxb.20220913.004

掺杂改性PMMA/PVDF共混聚合物基复合介质的储能性能提升

doi: 10.13801/j.cnki.fhclxb.20220913.004
基金项目: 国家自然科学基金青年科学基金(52007042);黑龙江省自然科学基金联合引导项目(LH2020 E091);电子薄膜与集成器件国家重点实验室开放项目(KFJJ201904)
详细信息
    通讯作者:

    张天栋,博士,副教授,博士生导师,研究方向为聚合物电容器薄膜 E-mail: tdzhang@hrbust.edu.cn

  • 中图分类号: TM211;TB332

Improved energy storage performance of PMMA/PVDF blend polymer matrix composites by doping modification

Funds: National Natural Science Foundation of China Youth Science Foundation (52007042); Natural Science Foundation of Heilongjiang Province (LH2020 E091); Open Project of National Key Laboratory of Electronic Thin Films and Integrated Devices (KFJJ201904)
  • 摘要: 薄膜电容器在高压输电换流站、新能源汽车电驱动控制器、电磁武器脉冲功率电源等电气工程和电子器件领域具有重要应用。当前薄膜电容器正向着高能量密度、耐电压、耐高温等技术方向发展,对电容薄膜的电气性能提出了更高要求。本文选择铁电聚偏氟乙烯(PVDF)和聚甲基丙烯酸甲酯(PMMA)共混物作为储能聚合物基体,以具有高介电常数的纳米粒子BaTiO3和具有高电子亲和能的有机分子半导体[6, 6]-苯基C61丁酸甲酯(PCBM)作为掺杂相,综合利用BaTiO3的高介电特性及PCBM的捕获电荷能力,提高复合介质的极化强度与击穿场强,显著改善储能性能。研究表明,单掺杂BaTiO3时,掺杂含量为3wt%时复合介质综合性能最优;在此基础上,随着PCBM掺杂含量增大其储能密度和充放电效率提升明显。当PCBM掺杂含量为2wt%时,含有3wt%BT的PMMA/PVDF复合介质具有优异的储能性能,当电场为579.67 kV/mm时,放电能量密度达到15.60 J/cm3且充放电效率为75.30%。本文首次提出基于少量无机高介电协同有机分子半导体功能填料的聚合物薄膜储能性能改性研究,通过加入少量的BaTiO3,既避免了由于BaTiO3含量过高而导致的绝缘性能下降问题,又保证了BaTiO3粒子对复合介质介电常数和极化性能的提升。同时,为了进一步改善因低介电常数基体与高介电常数BaTiO3颗粒之间的电场畸变所导致的击穿强度下降问题,考虑在复合介质中加入一定量的PCBM,利用PCBM强大的电子亲和能力,在复合介质中构筑深陷阱以捕获和束缚载流子,抑制载流子的迁移,提升复合介质的击穿场强,从而综合提升了复合介质的储能性能,这为开发储能性能优异的聚合物复合介质提供了一种新思路。

     

  • 图  1  BaTiO3颗粒的SEM图像

    Figure  1.  SEM image of BaTiO3 particles

    图  2  不同BaTiO3含量的PMMA/PVDF-xwt%-BaTiO3共混复合薄膜的SEM图像:(a) 1wt%;(b) 2wt%;(c) 3wt%;(d) 4wt%

    Figure  2.  SEM images of PMMA/PVDF-xwt%-BaTiO3 blended composite films with different BaTiO3 contents: (a) 1wt%; (b) 2wt%; (c) 3wt%; (d) 4wt%

    图  3  PMMA/PVDF-xwt%-BaTiO3共混复合薄膜的XRD图谱

    Figure  3.  XRD patterns of PMMA/PVDF-xwt%-BaTiO3 blended composite films

    图  4  PMMA/PVDF-xwt%-BaTiO3共混复合薄膜的FTIR图谱

    Figure  4.  FTIR spectra of PMMA/PVDF-xwt%-BaTiO3 blend composite films

    图  5  PMMA/PVDF-xwt%-BaTiO3共混复合薄膜的电学性能:(a) 介电常数;(b) 介电损耗;(c) 漏电流密度;(d) 击穿场强

    Figure  5.  Electrical properties of PMMA/PVDF-xwt%-BaTiO3 blend composite films: (a) Dielectric constant; (b) Dielectric loss; (c) Leakage current density; (d) Breakdown field strength

    P—Failure probability

    图  6  PMMA/PVDF-xwt%-BaTiO3共混复合薄膜的极化性能:(a) 电位移-电场强度(D-E)曲线;(b) 最大极化(Dmax)和剩余极化(Dr)的柱状图分布

    Figure  6.  Polarization properties of PMMA/PVDF-xwt%-BaTiO3 blend composite films: (a) Electric displacement-electric field intensity (D-E) curves; (b) Histogram distribution of maximum polarization (Dmax) and residual polarization (Dr)

    图  7  PMMA/PVDF-xwt%-BaTiO3共混复合薄膜的储能性能:(a) 储能密度(Ue)和储能效率(η)变化规律;(b) 储能密度和储能效率的柱状图分布

    Figure  7.  Energy storage performance of PMMA/PVDF-xwt%-BaTiO3 blend composite film: (a) Changing rule of energy storage density (Ue) and energy storage efficiency (η); (b) Histogram distribution of energy storage density and energy storage efficiency

    图  8  PMMA-ywt%PCBM@PVDF-3wt%BaTiO3共混复合薄膜的SEM截面图像:(a) 1wt%PCBM;(b) 1.5wt%PCBM;(c) 2wt%PCBM;(d) 2.5wt%PCBM

    Figure  8.  SEM cross sections images of PMMA-ywt%PCBM@PVDF-3wt%BaTiO3 composite films: (a) 1wt%PCBM; (b) 1.5wt%PCBM; (c) 2wt%PCBM; (d) 2.5wt%PCBM

    图  9  PMMA-ywt%PCBM@PVDF-3wt%BaTiO3共混复合薄膜XRD图谱

    Figure  9.  XRD patterns of PMMA-ywt%PCBM@PVDF-3wt%BaTiO3 blend composite films

    图  10  PMMA-ywt%PCBM@PVDF-3wt%BaTiO3共混复合薄膜FTIR图谱

    Figure  10.  FTIR spectra of PMMA-ywt%PCBM@PVDF-3wt%BaTiO3 blend composite films

    图  11  PMMA-ywt%PCBM@PVDF-3wt%BaTiO3共混复合薄膜的电学性能:(a)介电常数;(b) 介电损耗;(c) 漏电流密度;(d) 击穿场强

    Figure  11.  Electrical properties of PMMA-ywt%PCBM@PVDF-3wt%BaTiO3 blend composite films: (a) Dielectric constant; (b) Dielectric loss; (c) Leakage current density; (d) Breakdown field strength

    图  12  PMMA-ywt%PCBM@PVDF-3wt%BaTiO3混复合薄膜的极化性能:(a) 位移-电场(D-E)曲线;(b) DmaxDr的柱状图分布

    Figure  12.  Polarization properties of PMMA-ywt%PCBM@PVDF-3wt%BaTiO3 blend composite films: (a) Displacement-electric field (D-E) curves; (b) Histogram distribution of Dmax and Dr

    图  13  PMMA-ywt%PCBM@PVDF-3wt%BaTiO3共混复合薄膜的储能性能:(a) 储能密度和储能效率变化规律;(b) 储能密度和储能效率的柱状图分布

    Figure  13.  Energy storage performance of PMMA-ywt%PCBM@PVDF-3wt%BaTiO3 blend composite films: (a) Energy storage density and energy storage efficiency; (b) Histogram distribution of energy storage density and energy storage efficiency

    表  1  聚甲基丙烯酸甲酯(PMMA)-ywt%[6, 6]-苯基C61丁酸甲酯(PCBM)@聚偏氟乙烯(PVDF)-xwt%BaTiO3样品的命名

    Table  1.   Naming of polymethyl methacrylate (PMMA)-ywt%[6, 6]-phenyl C61 (PCBM)@Polyvinylidene fluoride (PVDF)-xwt%BaTiO3 samples

    Sample nameSubstratex/wt%y/wt%
    PMMA/PVDF-1wt%-BaTiO3 PMMA/PVDF 1 0
    PMMA/PVDF-2wt%-BaTiO3 PMMA/PVDF 2 0
    PMMA/PVDF-3wt%-BaTiO3 PMMA/PVDF 3 0
    PMMA/PVDF-4wt%-BaTiO3 PMMA/PVDF 4 0
    PMMA-1.0wt%PCBM@PVDF-3wt%BaTiO3 PMMA/PVDF-3wt%-BaTiO3 3 1.0
    PMMA-1.5wt%PCBM@PVDF-3wt%BaTiO3 PMMA/PVDF-3wt%-BaTiO3 3 1.5
    PMMA-2.0wt%PCBM@PVDF-3wt%BaTiO3 PMMA/PVDF-3wt%-BaTiO3 3 2.0
    PMMA-2.5wt%PCBM@PVDF-3wt%BaTiO3 PMMA/PVDF-3wt%-BaTiO3 3 2.5
    Notes: x—Mass fraction of BaTiO3; y—Mass fraction of PCBM.
    下载: 导出CSV

    表  2  具有不同BT含量的PMMA/PVDF-xwt%-BaTiO3共混复合薄膜的电学性能参数

    Table  2.   Electrical properties of PMMA/PVDF-xwt%-BaTiO3 blended composite films with different BT contents 100 Hz

    SampleεtanδEb/(kV·mm−1)β
    PMMA/PVDF5.500.0586593.3912.55
    PMMA/PVDF-1wt%-BaTiO35.800.0531554.7612.04
    PMMA/PVDF-2wt%-BaTiO36.000.0543522.6710.20
    PMMA/PVDF-3wt%-BaTiO36.370.0584511.9611.51
    PMMA/PVDF-4wt%-BaTiO36.900.0601434.529.84
    Notes: ε—Dielectric constant; tanδ—Dielectric loss; Eb—Breakdown electric field; β—Shape parameter.
    下载: 导出CSV

    表  3  不同PCBM含量的PMMA-ywt%PCBM@PVDF-3wt%BaTiO3共混复合薄膜的电学性能参数

    Table  3.   Electrical properties of PMMA-ywt%PCBM@PVDF-3wt%BaTiO3 blends with different PCBM contents 100 Hz

    SampleεtanδEb/(kV·mm−1)β
    PMMA/PVDF-3wt%-BaTiO36.370.0584511.9611.51
    PMMA-1wt%PCBM@PVDF-3wt%BaTiO36.570.0620531.7010.98
    PMMA-1.5wt%PCBM@PVDF-3wt%BaTiO36.780.0585563.8310.02
    PMMA-2wt%PCBM@PVDF-3wt%BaTiO37.060.0546579.6711.17
    PMMA-2.5wt%PCBM@PVDF-3wt%BaTiO37.290.0653490.9410.99
    下载: 导出CSV
  • [1] PRATEEK, THAKUR V K, GUPTA R K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: Synthesis, dielectric properties, and future aspects[J]. Chemical Reviews,2016,116(7):4260-4317. doi: 10.1021/acs.chemrev.5b00495
    [2] HUANG X, SUN B, ZHU Y, et al. High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications[J]. Progress in Materials Science,2019,100:187-225. doi: 10.1016/j.pmatsci.2018.10.003
    [3] TAN D Q. The search for enhanced dielectric strength of polymer-based dielectrics: A focused review on polymer nanocomposites[J]. Journal of Applied Polymer Science,2020,137(33):49379. doi: 10.1002/app.49379
    [4] ZHENG M S, ZHENG Y T, ZHA J W, et al. Improved dielectric, tensile and energy storage properties of surface rubberized BaTiO3/polypropylene nanocomposites[J]. Nano Energy,2018,48:144-151. doi: 10.1016/j.nanoen.2018.03.049
    [5] ZHANG Y, ZHANG C, FENG Y, et al. Energy storage enhancement of P(VDF-TrFE-CFE)-based composites with double-shell structured BZCT nanofibers of parallel and orthogonal configurations[J]. Nano Energy,2019,66:104195. doi: 10.1016/j.nanoen.2019.104195
    [6] ZHANG Y, ZHANG C, FENG Y, et al. Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction[J]. Nano Energy,2019,56:138-150. doi: 10.1016/j.nanoen.2018.11.044
    [7] LIU G, FENG Y, ZHANG T, et al. High-temperature all-organic energy storage dielectric with the performance of self-adjusting electric field distribution[J]. Journal of Materials Chemistry A,2021,9(30):16384-16394. doi: 10.1039/D1TA02668B
    [8] WANG Z, WANG T, WANG C, et al. Poly(vinylidene fluoride) flexible nanocomposite films with dopamine-coated giant dielectric ceramic nanopowders, Ba(Fe0.5Ta0.5)O3, for high energy-storage density at low electric field[J]. ACS Applied Materials & Interfaces,2017,9(34):29130-29139. doi: 10.1021/acsami.7b08664
    [9] CHU B, ZHOU Y. Energy storage properties of PVDF terpolymer/PMMA blends[J]. High Voltage,2016,1(4):171-174. doi: 10.1049/hve.2016.0062
    [10] CHI Q, ZHOU Y, YIN C, et al. A blended binary composite of poly(vinylidene fluoride) and poly(methyl methacrylate) exhibiting excellent energy storage performances[J]. Journal of Materials Chemistry C,2019,7(45):14148-14158. doi: 10.1039/C9TC04695J
    [11] THAKUR Y, LEAN M H, ZHANG Q M. Reducing conduction losses in high energy density polymer using nanocomposites[J]. Applied Physics Letters,2017,110(12):122905. doi: 10.1063/1.4979040
    [12] MACHUI F, LANGNER S, ZHU X, et al. Determination of the P3 HT:PCBM solubility parameters via a binary solvent gradient method: Impact of solubility on the photovoltaic performance[J]. Solar Energy Materials and Solar Cells,2012,100:138-146. doi: 10.1016/j.solmat.2012.01.005
    [13] ZHANG C, ZHANG T, FENG M, et al. Significantly improved energy storage performance of PVDF ferroelectric films by blending PMMA and filling PCBM[J]. ACS Sustainable Chemistry & Engineering,2021,9(48):16291-16303.
    [14] ZHANG Y, CHI Q, LIU L, et al. PVDF-based dielectric composite films with excellent energy storage performances by design of nanofibers composition gradient structure[J]. ACS Applied Energy Materials,2018,1(11):6320-6329. doi: 10.1021/acsaem.8b01306
    [15] SANG X, LI X, ZHANG D, et al. Improved dielectric properties and energy-storage densities of BaTiO3-doped PVDF composites by heat treatment and surface modification of BaTiO3[J]. Journal of Physics D: Applied Physics,2022,55(21):215501. doi: 10.1088/1361-6463/ac4942
    [16] CAI X, LEI T, SUN D, et al. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR[J]. RSC Advances,2017,7(25):15382-15389. doi: 10.1039/C7RA01267E
    [17] MIAO B, LIU J, ZHANG X, et al. Ferroelectric relaxation dependence of poly(vinylidene fluoride-co-trifluoroethylene) on frequency and temperature after grafting with poly(methyl methacrylate)[J]. RSC Advances,2016,6(87):84426-84438. doi: 10.1039/C6RA17977K
    [18] LI J, MENG Q, LI W, et al. Influence of crystalline properties on the dielectric and energy storage properties of poly(vinylidene fluoride)[J]. Journal of Applied Polymer Science,2011,122(3):1659-1668. doi: 10.1002/app.34020
    [19] ELASHMAWI I S, HAKEEM N A. Effect of PMMA addition on characterization and morphology of PVDF[J]. Polymer Engineering & Science,2008,48(5):895-901.
    [20] SU J, ZHANG J. Recent development on modification of synthesized barium titanate (BaTiO3) and polymer/BaTiO3 dielectric composites[J]. Journal of Materials Science: Materials in Electronics,2018,30(3):1957-1975.
    [21] CHI Q, MA T, ZHANG Y, et al. Significantly enhanced energy storage density for poly(vinylidene fluoride) composites by induced PDA-coated 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanofibers[J]. Journal of Materials Chemistry A,2017,5(32):16757-16766. doi: 10.1039/C7TA03897F
    [22] ZHU L, WANG Q. Novel ferroelectric polymers for high energy density and low loss dielectrics[J]. Macromolecules,2012,45(7):2937-2954. doi: 10.1021/ma2024057
    [23] SUN L, SHI Z, WANG H, et al. Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide-BaTiO3/P(VDF-HFP) composites[J]. Journal of Materials Chemistry A,2020,8(11):5750-5757. doi: 10.1039/D0TA00903B
    [24] RU J, MIN D, LANAGAN M, et al. Energy storage properties of polyimide/BaTiO3 nanocomposite films and their breakdown mechanism in a wide content range[J]. Applied Physics Letters,2019,115(21):213901. doi: 10.1063/1.5115766
    [25] LI Y, HO J, WANG J, et al. Understanding nonlinear dielectric properties in a biaxially oriented poly(vinylidene fluoride) film at both low and high electric fields[J]. ACS Applied Materials & Interfaces,2016,8(1):455-465. doi: 10.1021/acsami.5b09368
    [26] YAO L, PAN Z, ZHAI J, et al. High-energy-density with polymer nanocomposites containing of SrTiO3 nanofibers for capacitor application[J]. Composites Part A: Applied Science and Manufacturing,2018,109:48-54. doi: 10.1016/j.compositesa.2018.02.040
    [27] MARWAT M A, MA W, FAN P, et al. Ultrahigh energy density and thermal stability in sandwich-structured nanocomposites with dopamine@Ag@BaTiO3[J]. Energy Storage Materials,2020,31:492-504. doi: 10.1016/j.ensm.2020.06.030
    [28] FENG Y, WU Y, XIE Y, et al. Tunable permittivity in polymer composites filled with Si-based semiconductors by regulating induced polarization[J]. Materials Science in Semiconductor Processing,2017,61:63-70. doi: 10.1016/j.mssp.2016.12.029
    [29] YUAN C, ZHOU Y, ZHU Y, et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage[J]. Nature Communications,2020,11(1):3919. doi: 10.1038/s41467-020-17760-x
    [30] ARKHIPOV V I, REYNAERT J, JIN Y D, et al. The effect of deep traps on carrier hopping in disordered organic materials[J]. Synthetic Metals,2003,138(1-2):209-212. doi: 10.1016/S0379-6779(02)01267-5
    [31] NENASHEV A V, VALKOVSKII V V, OELERICH J O, et al. Release of carriers from traps enhanced by hopping[J]. Physical Review B,2018,98(15):155207. doi: 10.1103/PhysRevB.98.155207
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  1115
  • HTML全文浏览量:  486
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-25
  • 修回日期:  2022-08-28
  • 录用日期:  2022-09-05
  • 网络出版日期:  2022-09-14
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回