留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位组装沸石咪唑酯骨架对纸基ZnO纳米棒阵列光电性能的影响研究

于海瀚 谭晓冉 孙术博 张丽娜 朱沛华 于京华 高超民

于海瀚, 谭晓冉, 孙术博, 等. 原位组装沸石咪唑酯骨架对纸基ZnO纳米棒阵列光电性能的影响研究[J]. 复合材料学报, 2022, 40(0): 1-7
引用本文: 于海瀚, 谭晓冉, 孙术博, 等. 原位组装沸石咪唑酯骨架对纸基ZnO纳米棒阵列光电性能的影响研究[J]. 复合材料学报, 2022, 40(0): 1-7
Haihan YU, xiaoran TAN, shubo SUN, lina ZHANG, peihua ZHU, jinghua YU, Chaomin GAO. Effect of in-situ assembling zeolite imidazolate frameworks on the photoelectric properties of paper-based ZnO nanorod array[J]. Acta Materiae Compositae Sinica.
Citation: Haihan YU, xiaoran TAN, shubo SUN, lina ZHANG, peihua ZHU, jinghua YU, Chaomin GAO. Effect of in-situ assembling zeolite imidazolate frameworks on the photoelectric properties of paper-based ZnO nanorod array[J]. Acta Materiae Compositae Sinica.

原位组装沸石咪唑酯骨架对纸基ZnO纳米棒阵列光电性能的影响研究

基金项目: 国家自然科学基金(22104043,51872121);泰山学者攀登计划;济南市“一事一议”顶尖人才项目;济南市“高校20条”项目(2018GXRC001);
详细信息
    作者简介:

    朱沛华,博士,副教授,硕士生导师,研究方向为卟啉酞菁大环化合物设计制备及其气敏器件应用 E-mail: chm_zhuph@ujn.edu.cn

    通讯作者:

    朱沛华,博士,副教授,硕士生导师,研究方向为卟啉酞菁大环化合物设计制备及其气敏器件应用 E-mail: chm_zhuph@ujn.edu.cn

    高超民,博士,副教授,硕士生导师,研究方向为功能纳米材料可控制备及其光电转换应用 E-mail: chm_gaocm@163.com

  • 中图分类号: O611.4,O471.5,O741+.5

Effect of in-situ assembling zeolite imidazolate frameworks on the photoelectric properties of paper-based ZnO nanorod array

Funds: National Natural Science Foundation of China (22104043,51872121); Taishan Scholars Program; the Case-by-Case Project for Top Outstanding Talents of Jinan; the project of “20 items of University” of Jinan;
  • 摘要: 性能卓越的光电极材料的设计制备对光电化学技术的发展与应用至关重要。近年来,纸基光敏材料以其比表面积大、环境友好且成本低的优点被广泛研究。其中,作为一种高光电活性、高电子迁移率、无毒的光电极材料,纸基一维ZnO纳米棒被认为具有广阔的应用前景。然而,高载流子复合率以及光腐蚀现象严重制约其光电性能的进一步提升。为降低光生载流子复合率并抑制光腐蚀,采用水热法在纸基ZnO表面原位组装沸石咪唑酯骨架材料-8(ZIF-8),制备纸基一维ZnO/ZIF-8纳米棒阵列光电极。结果显示,ZIF-8均匀、致密分布在纸基ZnO表面,二者界面处无缝结合,利于促进界面电荷传输。同时,原位组装ZIF-8过程中,聚集大量氧空位的ZnO表面被刻蚀并转化为ZIF-8,利于抑制光腐蚀。此外,ZnO与ZIF-8能级匹配,二者结合形成异质结,可实现光生电子与空穴的双向传输,从而有效促进光生载流子分离。与纯ZnO纳米棒相比,纸基ZnO/ZIF-8复合材料展现出更高的光生载流子分离与传输效率、更大的光电流密度以及更好的光稳定性。

     

  • 图  1  (a, b)纸基ZnO与(c, d)纸基ZnO/ZIF-8 SEM图

    Figure  1.  SEM image of paper-based ZnO (a, b) and paper-based ZnO/ZIF-8(c, d)

    图  2  (a) ZnO/ZIF-8纳米棒TEM图以及(b) HRTEM图

    Figure  2.  (a) TEM image and (b) HRTEM image of ZnO/ZIF-8 nanotube

    图  3  ZnO/ZIF-8与ZnO XRD图谱

    Figure  3.  XRD results of ZnO/ZIF-8 (a) and ZnO (b)

    图  4  不同溶剂组成条件下ZnO/ZIF-8的SEM图:(a)纯水、(b) DMF/H2O=1∶1、(c) DMF/H2O=2∶1以及(d)纯DMF

    Figure  4.  SEM image of the ZnO/ZIF-8 obtained under different solvent condition: (a) pure water, (b) DMF/H2O=1∶1、(c) DMF/H2O=2∶1 and (d) pure DMF

    图  5  (a) ZnO/ZIF-8光电流密度测试、(b)光稳定性测试,(c)样品PL以及(d) TRPL谱图

    Figure  5.  (a) photocurrent density, (b) photostability of the samples and (c) PL, (d) TRPL spectra of ZnO/ZIF-8

    图  6  ZnO/ZIF-8异质结能带结构及其光生电子-空穴迁移过程示意图

    Figure  6.  Schematic diagram of band structure and photogenerated electron-hole migration of ZnO/ZIF-8 heterojunction

    表  1  ZnO与ZnO/ZIF-8 TRPL拟合结果

    Table  1.   Fitting results of PL decay curves obtained from the ZnO and ZnO/ZIF-8.

    τ1/nsA1τ2/nsA2
    ZnO0.270140.46890.270120.4687
    ZnO/ZIF-80.20920.588280.209220.58828
    Notes: τ-Time constant; A-Relative amplitudes.
    下载: 导出CSV
  • [1] BRUNETTI F, OPERAMOLLA A, CASTRO-HERMOSA S, et al. Printed solar cells and energy storage devices on paper substrates[J]. Advanced Functional Materials,2019,29(21):1806798. doi: 10.1002/adfm.201806798
    [2] WENG B, GRICE C R, GE J, et al. Barium bismuth niobate double perovskite/tungsten oxide nanosheet photoanode for high-performance photoelectrochemical water splitting[J]. Advanced Energy Materials,2018,8(10):1701665.
    [3] MASCARERRI L, DUTTA A, KMENT S, et al. Plasmon-enhanced photoelectrochemical water splitting for efficient renewable energy storage[J]. Advanced Materials,2019,31(31):1805513. doi: 10.1002/adma.201805513
    [4] XIAO M, LUO B, WANG Z, et al. Recent advances of metal oxide photoanodes: Engineering of charge separation and transportation toward efficient solar water splitting[J]. Solar RRL,2020,4(8):1900509. doi: 10.1002/solr.201900509
    [5] SU B, WU Y, JIANG L. The art of aligning one-dimensional (1 d) nanostructures[J]. Chemical Society Reviews,2012,41(23):7832-7856. doi: 10.1039/c2cs35187k
    [6] TANG Y, SUN H, QIN Z, et al. Bioinspired photocatalytic ZnO/Au nanopillar-modified surface for enhanced antibacterial and antiadhesive property[J]. Chemical Engineering Journal,2020,398:125575. doi: 10.1016/j.cej.2020.125575
    [7] RUDD A L, BRESLIN C B. Photo-induced dissolution of zinc in alkaline solutions[J]. Electrochimica Acta,2000,45(10):1571-1579. doi: 10.1016/S0013-4686(99)00322-9
    [8] FU H, XU T, ZHU S, et al. Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60[J]. Environmental Science & Technology,2008,42(21):8064-8069.
    [9] ZHANG C, FEI W, WANG H, et al. P-n heterojunction of BiOI/ZnO nanorod arrays for piezo-photocatalytic degradation of bisphenol a in water[J]. Journal of Hazardous Materials,2020,399:123109. doi: 10.1016/j.jhazmat.2020.123109
    [10] YIN B, ZHANG H, QIU Y, et al. Piezo-phototronic effect enhanced self-powered and broadband photodetectors based on Si/ZnO/CdO three-component heterojunctions[J]. Nano Energy,2017,40:440-446. doi: 10.1016/j.nanoen.2017.08.036
    [11] YANG Y, GAO P, WANG Y, et al. A direct charger transfer from interface to surface for the highly efficient spatial separation of electrons and holes: The construction of Ti–C bonded interfaces in TiO2-C composite as a touchstone for photocatalytic water splitting[J]. Nano Energy,2017,33:29-36. doi: 10.1016/j.nanoen.2017.01.030
    [12] TANG Z, ZHU F, ZHOU J, et al. Monolithic NF@ZnO/Au@ZIF-8 photocatalyst with strong photo-thermal-magnetic coupling and selective-breathing effects for boosted conversion of CO2 to CH4[J]. Applied Catalysis B:Environmental,2022,309:121267. doi: 10.1016/j.apcatb.2022.121267
    [13] WEN M, SONG S, LIU Q, et al. Manipulation of plasmon-induced hot electron transport in Pd/MoO3-x@ZIF-8: Boosting the activity of Pd-catalyzed nitroaromatic hydrogenation under visible-light irradiation[J]. Applied Catalysis B:Environmental,2021,282:119511. doi: 10.1016/j.apcatb.2020.119511
    [14] KIM H, KIM W, PARK J, et al. Surface conversion of ZnO nanorods to ZIF-8 to suppress surface defects for a visible-blind UV photodetector[J]. Nanoscale,2018,10(45):21168-21177. doi: 10.1039/C8NR06701E
    [15] ZHAN W W, KUANG Q, ZHOU J Z, et al. Semiconductor@metal-organic framework core-shell heterostructures: A case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response[J]. Journal of the American Chemical Society,2013,135(5):1926-1933. doi: 10.1021/ja311085e
    [16] YANG H, ZHANG Y, ZHANG L, et al. Stackable lab-on-paper device with all-in-one au electrode for high-efficiency photoelectrochemical cyto-sensing[J]. Analytical Chemistry,2018,90(12):7212-7220. doi: 10.1021/acs.analchem.8b00153
    [17] YUAN K, YIN X, LI J, et al. Preparation and dsc application of the size-tuned ZnO nanoarrays[J]. Journal of Alloys and Compounds,2010,489(2):694-699. doi: 10.1016/j.jallcom.2009.09.156
    [18] PAN Y, LIU Y, ZENG G, et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system[J]. Chemical Communications,2011,47(7):2071-2073. doi: 10.1039/c0cc05002d
    [19] LI X, LIU S, FAN K, et al. MOF-based transparent passivation layer modified ZnO nanorod arrays for enhanced photo-electrochemical water splitting[J]. Advanced Energy Materials,2018,8(18):1800101. doi: 10.1002/aenm.201800101
    [20] GAO C, XUE J, ZHANG L, et al. Paper-based origami photoelectrochemical sensing platform with TiO2/Bi4NBo8Cl/Co-Pi cascade structure enabling of bidirectional modulation of charge carrier separation[J]. Analytical Chemistry,2018,90(24):14116-14120. doi: 10.1021/acs.analchem.8b04662
    [21] YU X, WANG S, ZHANG X, et al. Heterostructured nanorod array with piezophototronic and plasmonic effect for photodynamic bacteria killing and wound healing[J]. Nano Energy,2018,46:29-38. doi: 10.1016/j.nanoen.2018.01.033
    [22] SHAO M, NING F, WEI M, et al. Hierarchical nanowire arrays based on ZnO core−layered double hydroxide shell for largely enhanced photoelectrochemical water splitting[J]. Advanced Functional Materials,2014,24(5):580-586. doi: 10.1002/adfm.201301889
    [23] PATIL R P, MAHADIK M A, BAE H-S, et al. Porous Zn1-xCdxS nanosheets/ZnO nanorod heterojunction photoanode via self-templated and cadmium ions exchanged conversion of ZnS(hda)0.5 nanosheets/ZnO nanorod[J]. Chemical Engineering Journal,2020,402:126153. doi: 10.1016/j.cej.2020.126153
    [24] GU M, LI Y, ZHANG M, et al. Bismuth nanoparticles and oxygen vacancies synergistically attired Zn2SnO4 with optimized visible-light-active performance[J]. Nano Energy,2021,80:105415. doi: 10.1016/j.nanoen.2020.105415
    [25] WANG S, HE T, CHEN P, et al. In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes[J]. Advanced Materials,2020,32(26):e2001385. doi: 10.1002/adma.202001385
    [26] NING X, YIN D, FAN Y, et al. Plasmon-enhanced charge separation and surface reactions based on Ag-loaded transition-metal hydroxide for photoelectrochemical water oxidation[J]. Advanced Energy Materials,2021,11(17):2100405. doi: 10.1002/aenm.202100405
    [27] GRAU-CRESPO R, AZIZ A, COLLINS A W, et al. Modelling a linker mix-and-match approach for controlling the optical excitation gaps and band alignment of zeolitic imidazolate frameworks[J]. Angewandte Chemie-International Edition,2016,55(52):16012-16016. doi: 10.1002/anie.201609439
    [28] LIN Y-C, PENG C-K, LIM S-C, et al. Tailoring the surface oxygen engineering of a carbon-quantum-dot-sensitized ZnO@H-ZnO1-x multijunction toward efficient charge dynamics and photoactivity enhancement[J]. Applied Catalysis B:Environmental,2021,285:119846. doi: 10.1016/j.apcatb.2020.119846
  • 加载中
计量
  • 文章访问数:  50
  • HTML全文浏览量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31
  • 录用日期:  2022-05-08
  • 修回日期:  2022-04-30
  • 网络出版日期:  2022-05-30

目录

    /

    返回文章
    返回