留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单宁酸-端氨基聚氧化丙烯纳米粒子/琼脂糖复合冷冻凝胶的制备及性能

王立伟 于雪莹 韩健美 何炜

王立伟, 于雪莹, 韩健美, 等. 单宁酸-端氨基聚氧化丙烯纳米粒子/琼脂糖复合冷冻凝胶的制备及性能[J]. 复合材料学报, 2022, 40(0): 1-6
引用本文: 王立伟, 于雪莹, 韩健美, 等. 单宁酸-端氨基聚氧化丙烯纳米粒子/琼脂糖复合冷冻凝胶的制备及性能[J]. 复合材料学报, 2022, 40(0): 1-6
Liwei WANG, Xueying YU, Jianmei HAN, Wei HE. Preparation and properties of cryogels composed of agarose and nanoparticles of tannic acid and amino-capped poly(propylene glycol)[J]. Acta Materiae Compositae Sinica.
Citation: Liwei WANG, Xueying YU, Jianmei HAN, Wei HE. Preparation and properties of cryogels composed of agarose and nanoparticles of tannic acid and amino-capped poly(propylene glycol)[J]. Acta Materiae Compositae Sinica.

单宁酸-端氨基聚氧化丙烯纳米粒子/琼脂糖复合冷冻凝胶的制备及性能

基金项目: 国家自然科学基金(31971255);
详细信息
    通讯作者:

    何炜,博士,教授,博士生导师,研究方向为生物医用材料 E-mail:wlhe@dlut.edu.cn

  • 中图分类号: R318.08;TQ427.2

Preparation and properties of cryogels composed of agarose and nanoparticles of tannic acid and amino-capped poly(propylene glycol)

  • 摘要: 为拓展琼脂糖基冷冻凝胶的生物功能,本研究秉承便捷环保的理念,将原位制备的植物多酚单宁酸(TA)-端氨基聚氧化丙烯(D400)纳米粒子的分散液与琼脂糖溶液简单共混,采用冷冻凝胶技术成功制备新型复合冷冻凝胶(ATD),并研究TA-D400纳米粒子形成时间(0 h vs 24 h)对冷冻凝胶(即ATD-0和ATD-24)性能的影响。结果表明:ATD复合冷冻凝胶具有互通的大孔结构和粗糙的孔壁,纳米粒子均匀分散在琼脂糖基质中;冷冻凝胶ATD-0和ATD-24的储能模量分别为1.8 kPa和0.8 kPa,显著高于未复合的琼脂糖凝胶;优异的DPPH自由基清除效果和铁离子还原/抗氧化能力分析法表征结果共同证实ATD的抗氧化功能。同时,在H2O2刺激成纤维细胞的实验中,ATD的抗氧化作用改善了细胞的存活率;此外,细胞黏附实验表明ATD支持成纤维细胞、前成骨细胞和原代皮质神经元等多种细胞的黏附。综上所述,TA-D400纳米粒子的引入实现了对琼脂糖凝胶的双重功能化,此类ATD复合冷冻凝胶有望成为组织工程领域的新型多孔支架材料。

     

  • 图  1  单宁酸 (TA)-端氨基聚氧化丙烯(D400)纳米粒子/琼脂糖复合冷冻凝胶(ATD)的制备示意图

    Figure  1.  Schematic of the preparation of ATD cryogel composed of agarose and TA-D400 nanoparticles

    图  2  (a) 各琼脂糖冻干胶的SEM图片;(b) 经异硫氰酸酯荧光素标记的冷冻凝胶在水中的荧光图片。

    Figure  2.  (a) SEM images of agarose cryogels; (b) Fluorescence images of fluorescein isothiocyanate labeled cryogels in water.

    图  3  各冷冻凝胶的红外谱图(a)、热重曲线(b)、溶胀率(c)。

    Figure  3.  FTIR spectra (a), TGA curves (b), and swelling ratio curves (c) of various cryogels.

    图  4  各冷冻凝胶的储能模量 (G')和损耗模量 (G")随频率变化。

    Figure  4.  Storage (G') and loss (G") modulus of various cryogels versus frequency.

    图  5  (a) DPPH自由基溶液与各冷冻凝胶作用后的紫外光谱;(b) 铁离子还原/抗氧化能力分析法(FRAP)测定总抗氧化能力。

    Figure  5.  (a) UV-vis spectra of the DPPH radical solution with various cryogel treatments; (b) total antioxidant capacity measured by ferric ion reducing/antioxidant power (FRAP).

    图  6  光学照片和细胞存活率量化体现复合冷冻凝胶ATD-0和ATD-24保护细胞免受H2O2诱导的损伤的能力。

    Figure  6.  Protective effects of cryogels on H2O2 induced cell death characterized by phase contrast images and cell viability.

    图  7  成纤维细胞、前成骨细胞和原代神经元细胞在冷冻凝胶上的荧光染色图片。

    Figure  7.  Fluorescent images of stained fibroblast, pre-osteoblast, and cortical neuron on the cryogels.

  • [1] NORMAND V, LOOTENS D L, AMICI E, et al. New insight into agarose gel mechanical properties[J]. Biomacromolecules,2000,1(4):730-738. doi: 10.1021/bm005583j
    [2] YAZDI M K, TAGHIZADEH A, TAGHIZADEH M, et al. Agarose-based biomaterials for advanced drug delivery[J]. Journal of Controlled Release,2020,326:523-543. doi: 10.1016/j.jconrel.2020.07.028
    [3] ZARRINTAJ P, MANOUCHEHRI S, AHMADI Z, et al. Agarose-based biomaterials for tissue engineering[J]. Carbohydrate Polymers,2018,187:66-84. doi: 10.1016/j.carbpol.2018.01.060
    [4] MEMIC A, COLOMBANI T, EGGERMONT L J, et al. Latest advances in cryogel technology for biomedical applications[J]. Advanced Therapeutics,2019,2(4):1800114. doi: 10.1002/adtp.201800114
    [5] BRUŽAUSKAITĖ I, BIRONAITĖ D, BAGDONAS E, et al. Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects[J]. Cytotechnology,2016,68(3):355-369. doi: 10.1007/s10616-015-9895-4
    [6] SU T, ZHANG M Y, ZENG Q U, et al. Mussel-inspired agarose hydrogel scaffolds for skin tissue engineering[J]. Bioactive Materials,2021,6(3):579-588. doi: 10.1016/j.bioactmat.2020.09.004
    [7] ZHANG Z, WANG X L, WANG Y T, et al. Rapid-forming and self-healing agarose-based hydrogels for tissue adhesives and potential wound dressings[J]. Biomacromolecules,2018,19(3):980-988. doi: 10.1021/acs.biomac.7b01764
    [8] CAO Z, GILBERT R J, HE W. Simple agarose−chitosan gel composite system for enhanced neuronal growth in three dimensions[J]. Biomacromolecules,2009,10(10):2954-2959. doi: 10.1021/bm900670n
    [9] VALKO M, LEIBFRITZ D, MONCOL J, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. The International Journal of Biochemistry & Cell Biology,2007,39(1):44-84.
    [10] 李冬冬, 蔡超, 杨萌, 等. 基于单宁酸的功能材料研究进展[J]. 高分子通报, 2017(9):10-20.

    LI D D, CAI C, YANG M, et al. Progress in the application of tannic acid to the functional materials[J]. Polymer Bulletin,2017(9):10-20(in Chinese).
    [11] 彭雪银, 李学锋, 李荣哲, 等. 多重氢键增强的带乙烯基二氨基三嗪水凝胶的记忆性能与药物的选择吸附[J]. 复合材料学报, 2021, 38(2):470-478.

    PENG X Y, LI X F, LI R Z, et al. Shape memory properties and selective adsorption of drugs of multiple hydrogen-bondsreinforced hydrogels with vinyl diaminotriazine[J]. Acta Materiae Compositae Sinica,2021,38(2):470-478(in Chinese).
    [12] WAN Y F, HAN J, CHENG F, et al. Green preparation of hierarchically structured hemostatic epoxy-amine sponge[J]. Chemical Engineering Journal,2020,397:125445. doi: 10.1016/j.cej.2020.125445
    [13] TOCCHIO A, MARTELLO F, TAMPLENIZZA M, et al. RGD-mimetic poly(amidoamine) hydrogel for the fabrication of complex cell-laden micro constructs[J]. Acta Biomaterialia,2015,18:144-154. doi: 10.1016/j.actbio.2015.02.017
    [14] 韩健美, 夏雨祥, 程昉, 等. 聚醚胺ED900-单宁酸构建表面微结构化复合涂层及其细胞相容性的研究[J]. 复合材料学报, 2022:1-7.

    HAN J M, XIA Y X, CHENG F, et al. Construction of microstructured composite coatings based on polyetheramine ED900-tannic acid and cytocompatibility study[J]. Acta Materiae Compositae Sinica,2022:1-7(in Chinese).
    [15] XIA Y X, SUN X N, HAN J M, et al. Complexation of tannic acid with polyoxypropylene diamine in water and application for the preparation of hierarchically structured functional surfaces[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,627:127201. doi: 10.1016/j.colsurfa.2021.127201
    [16] GUO Y, QU Y, YU J, et al. A chitosan-vitamin C based injectable hydrogel improves cell survival under oxidative stress[J]. International Journal of Biological Macromolecules,2022,202:102-111. doi: 10.1016/j.ijbiomac.2022.01.030
    [17] YAN C, POCHAN D J. Rheological properties of peptide-based hydrogels for biomedical and other applications[J]. Chemical Society Reviews,2010,39(9):3528-3540. doi: 10.1039/b919449p
    [18] 李泓, 张静, 陈可, 等. 羟基磷灰石纳米纤维增强甲基丙烯酸酐改性明胶复合水凝胶的制备及性能[J]. 复合材料学报, 2020, 37(10):2572-2581.

    LI H, ZHANG J, CHEN K, et al. Preparation and properties of hydroxyapatite nanofibers reinforced gelatin hydrogel modified by methacrylic anhydride composite hydrogel[J]. Acta Materiae Compositae Sinica,2020,37(10):2572-2581(in Chinese).
    [19] ZHAO H B, LIU M, ZHANG Y J, et al. Nanocomposite hydrogels for tissue engineering applications[J]. Nanoscale,2020,12(28):14976-14995. doi: 10.1039/D0NR03785K
    [20] 夏雨祥. 单宁酸-端氨基聚氧化丙烯的复合及性能研究[D]. 大连理工大学, 2021.

    XIA Y X. Study of complexation of tannic acid with amine-terminated polypropylene glycol and its properties[D]. 2021(in Chinese).
    [21] CHANG H, HUANG C, LIN K, et al. Effect of surface potential on NIH3 T3 cell adhesion and proliferation[J]. The Journal of Physical Chemistry C,2014,118(26):14464-14470. doi: 10.1021/jp504662c
    [22] MORIN E A, TANG S C, ROGERS K L, et al. Facile use of cationic hydrogel particles for surface modification of planar substrates toward multifunctional neural permissive surfaces: An in vitro investigation[J]. ACS Applied Materials & Interfaces,2016,8(8):5737-5745.
    [23] ZHAO X, LANG Q, YILDIRIMER L, et al. Photocrosslinkable gelatin hydrogel for epidermal tissue engineering[J]. Advanced Healthcare Materials,2016,5(1):108-118. doi: 10.1002/adhm.201500005
  • 加载中
计量
  • 文章访问数:  61
  • HTML全文浏览量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-28
  • 录用日期:  2022-05-02
  • 修回日期:  2022-04-18
  • 网络出版日期:  2022-05-20

目录

    /

    返回文章
    返回