留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双醛纤维素/聚乙烯醇复合水凝胶的制备及其性能

杨明琰 陈欣玥 张笑 管舒仪 蔡晓丹 张文博 王福俊 李鑫 王新平

杨明琰, 陈欣玥, 张笑, 等. 双醛纤维素/聚乙烯醇复合水凝胶的制备及其性能[J]. 复合材料学报, 2022, 39(10): 4889-4897. doi: 10.13801/j.cnki.fhclxb.20211018.002
引用本文: 杨明琰, 陈欣玥, 张笑, 等. 双醛纤维素/聚乙烯醇复合水凝胶的制备及其性能[J]. 复合材料学报, 2022, 39(10): 4889-4897. doi: 10.13801/j.cnki.fhclxb.20211018.002
YANG Mingyan, CHEN Xinyue, ZHANG Xiao, et al. Preparation and properties of dialdehyde cellulose/polyvinyl alcohol composite hydrogel[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4889-4897. doi: 10.13801/j.cnki.fhclxb.20211018.002
Citation: YANG Mingyan, CHEN Xinyue, ZHANG Xiao, et al. Preparation and properties of dialdehyde cellulose/polyvinyl alcohol composite hydrogel[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4889-4897. doi: 10.13801/j.cnki.fhclxb.20211018.002

双醛纤维素/聚乙烯醇复合水凝胶的制备及其性能

doi: 10.13801/j.cnki.fhclxb.20211018.002
基金项目: 陕西省重点研发计划—社会发展项目(2021SF-443);长安大学2020年大学生创新创业训练计划专项建设经费和国家级项目的教育部财政资助经费(S202010710510)
详细信息
    通讯作者:

    杨明琰,博士,副教授,硕士生导师,主要从事木质纤维素资源化利用研究  E-mail: yangmingyan67@163.com

  • 中图分类号: TB332

Preparation and properties of dialdehyde cellulose/polyvinyl alcohol composite hydrogel

  • 摘要: 开发高性能功能性水凝胶并建立药物缓释模型对医用伤口创面材料的开发具有重要的意义。以小麦秸秆为原料通过对甲苯磺酸(p-TsOH)、高频超声、高碘酸盐氧化制备含木质素的生物交联剂双醛纤维素(2,3-dialdehyde cellulose,DAC);以DAC为交联剂与聚乙烯醇(PVA)通过羟醛缩合反应形成互穿网络结构的DAC/PVA复合水凝胶,研究了DAC含量对复合水凝胶的微观结构、吸水溶胀性能、抗压缩性能及热稳定性的影响;采用物理共混法包埋氨苄青霉素(AP)制备DAC/PVA-AP载药水凝胶并研究其药物释放过程、释放机制及抑菌作用。结果表明,DAC/PVA复合水凝胶的微观结构呈多孔3D网络立体结构,交联密度随DAC含量的增加而增加;复合水凝胶的含水量及溶胀率随着DAC含量的增加而减小,当DAC含量从0.8wt%增加至2.0wt%时,其吸水溶胀率从1823.54%±13.89%降至1105.41%±7.06%;在70%的应变下,1.0wt%DAC/PVA水凝胶的初始抗压强度达到5.765 MPa,抗压缩性能较强;经121℃高温湿热灭菌后,复合水凝胶均能保持完整的形貌,说明其具有优异的耐高温性能;DAC/PVA-AP载药水凝胶的释放模型符合Korsmeyer-Peppas模型,缓释溶液对测试细菌具有良好的抑菌作用。以小麦秸秆为原料制备的互穿网络结构DAC/PVA复合水凝胶具有力学性能好、能耐高温灭菌等优点,在伤口创面敷料等领域具有潜在的应用价值。

     

  • 图  1  DAC/PVA复合水凝胶工艺设计流程

    Figure  1.  Overview scheme of preparation of DAC/PVA composite hydrogel

    p-TsOH—p-toluenesulfonic acid; DAC—2,3-dialdehyde cellulose; PVA—Polyvinyl alcohol

    图  2  纳米纤维素高碘酸钠氧化机制

    Figure  2.  Sodium periodate oxidation mechanism of nanocellulose

    图  3  LCNFs和DAC的红外光谱(a)及热稳定性结果(b)

    Figure  3.  Infrared spectra (a) and thermal stability results (b) of LCNFs and DAC

    LCNFs—Lignin containing nanofibrils; DTG—Derivative thermogravimetry

    图  4  (a) DAC、PVA交联机制;DAC/PVA复合水凝胶(b)及SEM图像(((c)~(f))分别为0.8wt%、1.0wt%、1.5wt%和2.0wt%DAC/PVA复合水凝胶)

    Figure  4.  (a) Crosslinking mechanism; DAC/PVA composite hydrogel (b) and SEM images of composite hydrogels (((c)-(f)) are 0.8wt%, 1.0wt%, 1.5wt% and 2.0wt%DAC/PVA composite hydrogels, respectively)

    图  5  DAC/PVA复合水凝胶的抗压缩性能:(a) 70%压缩应变下循环压缩10次的软化率;(b) 1.0wt%DAC/PVA水凝胶在不同应变下经过压缩10次的循环压缩曲线;(c) 1.0wt%DAC/PVA水凝胶在不同应变下经过压缩10次的软化率

    Figure  5.  Compression resistance of DAC/PVA composite hydrogel: (a) Softening ratio after 10 cycles of compression under 70% compression strain; (b) Cyclic compression curves of 1.0wt%DAC/PVA hydrogel under different strains after 10 times of compression; (c) Softening ratio of 1.0wt%DAC/PVA hydrogel after 10 times compression under different strains

    图  6  DAC/PVA水凝胶高温测试前 (a) 和测试后 (b) 的热稳定性

    Figure  6.  Thermal stability of DAC/PVA hydrogel before (a) and after (b) high temperature test

    图  7  DAC/PVA水凝胶包埋药物释放曲线(a)及Korsmeryer-Peppas模型线性拟合(b)

    Figure  7.  Drug release curve of DAC/PVA hydrogel embedding (a) and linear fitting of Korsmeryer-Peppas model (b)

    AP—Ampicillin; Mt—Amount of drug released at time t; M—Total drug; t—Sampling time

    图  8  载药复合水凝胶缓释液对E. coli (a)和S. aureus (b)的抑菌圈

    Figure  8.  Inhibition zone of E. coli (a) and S. aureus (b) by drug loaded compound hydrogel sustained release liquid

    a—DAC/PVA-3AP; b—DAC/PVA-6AP; c—DAC/PVA-9AP

    表  1  DAC/PVA复合水凝胶的含水量及溶胀率

    Table  1.   Water content and swelling rate of DAC/PVA composite hydrogels

    Hydrogel sampleWater content/%Swelling ratio/%
    0.8wt%DAC/PVA82.82±0.041823.54±13.89
    1.0wt%DAC/PVA81.21±0.021555.16±15.98
    1.5wt%DAC/PVA79.68±0.011318.90±14.50
    2.0wt%DAC/PVA79.08±0.011105.41±7.06
    下载: 导出CSV

    表  2  DAC/PVA水凝胶释放AP的Korsmeyer-Peppas模型的主要参数

    Table  2.   Main parameters of Korsmeyer-Peppas model for AP release by DAC/PVA hydrogel

    Type of modelSamplesFitting parameters
    KnR2
    Mt/M=KtnDAC/PVA-3AP0.173300.659960.99808
    DAC/PVA-6AP0.246380.577370.98744
    DAC/PVA-9AP0.271440.542220.99911
    Notes: K—Drug release rate; n—Drug release diffusion index; R2—Coefficient of association.
    下载: 导出CSV
  • [1] SAU Y C, YUKKEE C P, ANNE-CELIINE K, et al. Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices[J]. Science Robotics,2017,2(2):eaah 6451. doi: 10.1126/scirobotics.aah6451
    [2] JINAH K, ANTHONY C, ANUJ C. Extended delivery of ophthalmic drugs by silicone hydrogel contact lenses[J]. Biomaterials,2008,29(14):2259-2269. doi: 10.1016/j.biomaterials.2008.01.030
    [3] ELSNER J J, BERDICEVSKY I, ZILBERMAN M. In vitro microbial inhibition and cellular response to novel biodegradable composite wound dressings with controlled release of antibiotics[J]. Acta Biomaterialia,2011,7(1):325-336. doi: 10.1016/j.actbio.2010.07.013
    [4] ELBADAWY A K, ELREFAUE S K, CHEN X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings[J]. Journal of Advanced Research,2017,8(3):217-233. doi: 10.1016/j.jare.2017.01.005
    [5] 韩颖, 徐玉茵, 田林奇, 等. 聚乙烯醇基水凝胶敷料的研究进展[J]. 中国医疗器械杂志, 2018, 42(6):437-439, 443. doi: 10.3969/j.issn.1671-7104.2018.06.013

    HAN Ying, XU Yuyin, TIAN Linqi, et al. Research progress of polyvinyl alcohol-based hydrogel dressing[J]. Chinese Journal of Medical Devices,2018,42(6):437-439, 443(in Chinese). doi: 10.3969/j.issn.1671-7104.2018.06.013
    [6] AMIRALIAN N, ANNA P K, MEMMOTT P, et al. Isolation of cellulo senanofibrils from Triodia pungens via different mechanical methods[J]. Cellulose,2015,22(4):2483-2498. doi: 10.1007/s10570-015-0688-x
    [7] ABITBOL T, JOHNSTONE T, THOMOS M, et al. Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing[J]. Soft Matter,2011,7(6):2373-2379. doi: 10.1039/c0sm01172j
    [8] CHANG C Y, ANG L, ZHANG L N. Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels[J]. Macromolecular Chemistry and Physics,2008,209(12):1266-1273. doi: 10.1002/macp.200800161
    [9] 陆升, 程绍玲. 交联NFC/PVA水凝胶的制备及对重金属吸附研究[J]. 山西大学学报(自然科学版), 2020, 43(2):377-384. doi: 10.13451/j.sxu.ns.2019035

    LU Sheng, CHENG Shaoling. Preparation and adsorption properties of heavy metal ions of crosslinked NFC/PVA hydrogels[J]. Journal of Shanxi University (Natural Science Edition),2020,43(2):377-384(in Chinese). doi: 10.13451/j.sxu.ns.2019035
    [10] BIAN H Y, JIAO L, WANG R B, et al. Lignin nanoparticles as nano-spacers for tuning the viscoelasticity of cellulose nanofibril reinforced polyvinyl alcohol-borax hydrogel[J]. European Polymer Journal,2018,107:267-274. doi: 10.1016/j.eurpolymj.2018.08.028
    [11] LUKAS M, JAN V, JIRI K, et al. Dialdehyde cellulose crosslinked poly(vinyl alcohol) hydrogels: Influence of catalyst and crosslinker shelf life[J]. Carbohydrate Polymers,2018,198:181-190. doi: 10.1016/j.carbpol.2018.06.035
    [12] MONIKA M, LUKAS M, ZDENKA C, et al. Design of dialdehyde cellulose crosslinked poly(vinyl alcohol) hydrogels for transdermal drug delivery and wound dressings[J]. Materials Science and Engineering C,2020,116:111242. doi: 10.1016/j.msec.2020.111242
    [13] UNG K, YEONG R L, KANG T H K, et al. Protein adsorption of dialdehyde cellulose-crosslinked chitosan with high amino group contents[J]. Carbohydrate Polymers,2017,163:34-42. doi: 10.1016/j.carbpol.2017.01.052
    [14] DOU J, BIAN H, YELLE D J, et al. Lignin containing cellulose nanofibril production from willow bark at 80°C using a highly recyclable acid hydrotrope[J]. Industrial Crops and Products,2019,129:15-23. doi: 10.1016/j.indcrop.2018.11.033
    [15] BIAN H, CHEN L, DAI H, et al. Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable dicarboxylic acid[J]. Carbohydrate Polymers,2017,167:167-176. doi: 10.1016/j.carbpol.2017.03.050
    [16] YANG M Y, ZHANG X, GUAN S Y, et al. Preparation of lignin containing cellulose nanofibers and its application in PVA nanocomposite films[J]. International Journal of Biological Macromolecules,2020,158(3):1259-1267. doi: 10.1016/j.ijbiomac.2020.05.044
    [17] YAN G, ZHANG X, LI M, et al. Stability of soluble dialdehyde cellulose and the formation of hollow microspheres: Optimization and characterization[J]. ACS Sustainable Chemistry & Engineering,2019,7(2):2151-2159. doi: 10.1021/acssuschemeng.8b04825
    [18] CHEN G, ZHANG Y, XU D K, et al. Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650°C[J]. Materials Science and Engineering: A,2016,655:175-182. doi: 10.1016/j.msea.2015.12.096
    [19] SHAN Y, LEI J C, CHEN S C, et al. Development of gelatin/bacterial cellulose composite sponges as potential natural wound dressings[J]. International Journal of Biological Macromolecules,2019,133:148-155. doi: 10.1016/j.ijbiomac.2019.04.095
    [20] 赵春杰, 何春馥, 张薇薇, 等. 紫外分光光度法测定尿中氨苄青霉素的浓度[J]. 沈阳药学院学报, 1988(1):49-52.

    ZHAO Chunjie, HE Chunfu, ZHANG Weiwei, et al. Determination of ampicillin in urine by ultraviolet spectrophotometry[J]. Journal of Shenyang Pharmaceutical College,1988(1):49-52(in Chinese).
    [21] 吕苗苗. 功能化双醛纤维素的制备与性能研究[D]. 天津: 天津大学, 2018: 12-13.

    LV Miaomiao. Preparation and properties of functionalized dialdehyde cellulose[D]. Tianjin: Tianjin University, 2018: 12-13(in Chinese).
    [22] 徐朝阳, 李健昱, 石小梅, 等. 聚乙二醇改性纳米纤维素/聚乙烯醇复合水凝胶的制备及性能[J]. 复合材料学报, 2017, 34(4):708-713. doi: 10.13801/j.cnki.fhclxb.20160819.001

    XU Zhaoyang, LI Jianyu, SHI Xiaomei, et al. Preparation and properties of polyethylene glycol modified nanocellulosic/polyvinyl alcohol composite hydrogel[J]. Acta Materiae Compositae Sinica,2017,34(4):708-713(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160819.001
    [23] ZHU L X, LIU Y, JIANG Z M, et al. Highly temperature resistant cellulose nanofiber/polyvinyl alcohol hydrogel using aldehyde cellulose nanofiber as cross-linker[J]. Cellulose,2019,26:5291-5303. doi: 10.1007/s10570-019-02435-8
    [24] CUI Q, ZHENG Y, LIN Q, et al. Selective oxidation of bacterial cellulose by NO2-HNO3[J]. RSC Advances,2013,4(4):1630-1639. doi: 10.1039/C3RA44516J
    [25] ZHU L X, QIU J H, SAKAI E, et al. Rapid recovery double cross-linking hydrogel with stable mechanical properties and high resilience triggered by visible light[J]. ACS Applied Materials & Interfaces,2017,9(15):13593-13601. doi: 10.1021/acsami.7b01003
    [26] ZHU L X, QIU J H, SAKAI E, et al. Design of a rubbery carboxymethyl cellulose/polyacrylic acid hydrogel via visible-light-triggered polymerization[J]. Macromolecular Materials and Engineering,2017,302(6):513-520. doi: 10.1002/mame.201600509
    [27] NAIRI V, MEDDA L, MONDUZZI M, et al. Adsorption and release of ampicillin antibiotic from ordered mesoporous silica[J]. Journal of Colloid and Interface Science,2017,497:217-225. doi: 10.1016/j.jcis.2017.03.021
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1304
  • HTML全文浏览量:  740
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-31
  • 修回日期:  2021-09-22
  • 录用日期:  2021-10-01
  • 网络出版日期:  2021-10-19
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回