留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维复合材料-铝合金自冲铆接头成形规律及力学性能

符平坡 丁华 曾祥瑞 王纪 罗时清 魏宗来

符平坡, 丁华, 曾祥瑞, 等. 碳纤维复合材料-铝合金自冲铆接头成形规律及力学性能[J]. 复合材料学报, 2023, 40(8): 4517-4530. doi: 10.13801/j.cnki.fhclxb.20221110.003
引用本文: 符平坡, 丁华, 曾祥瑞, 等. 碳纤维复合材料-铝合金自冲铆接头成形规律及力学性能[J]. 复合材料学报, 2023, 40(8): 4517-4530. doi: 10.13801/j.cnki.fhclxb.20221110.003
FU Pingpo, DING Hua, ZENG Xiangrui, et al. Forming law and mechanical property of carbon fibre reinforced plastics and aluminum alloy self-piercing riveted joint[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4517-4530. doi: 10.13801/j.cnki.fhclxb.20221110.003
Citation: FU Pingpo, DING Hua, ZENG Xiangrui, et al. Forming law and mechanical property of carbon fibre reinforced plastics and aluminum alloy self-piercing riveted joint[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4517-4530. doi: 10.13801/j.cnki.fhclxb.20221110.003

碳纤维复合材料-铝合金自冲铆接头成形规律及力学性能

doi: 10.13801/j.cnki.fhclxb.20221110.003
详细信息
    通讯作者:

    丁华,学士,高级工程师,研究方向为车身轻量化工艺及智能制造 E-mail: dingh@geely.com

  • 中图分类号: TB332

Forming law and mechanical property of carbon fibre reinforced plastics and aluminum alloy self-piercing riveted joint

  • 摘要: 碳纤维复合材料在轻量化车身制造方面具有巨大的潜力和应用空间,而实现复合材料的有效连接则为一大挑战。采用自冲铆技术开展碳纤维复合材料和铝合金板材的连接工艺探索,总结了铆钉类型、冲铆速度和铆模尺寸对接头结构参数的影响规律,分析了冲铆过程中底切结构的形成机制,考察了不同板厚接头的强度性能及失效方式。研究发现,自冲铆接头底切值主要受到钉脚刺入下板深度及脚尖局部力矩作用的影响,且随铆钉有效长度、冲铆速度及铆模深度的提升而增加。通过工艺优化,碳纤维复合材料和铝合金板之间可得到成形结构良好的自冲铆接头,其机械内锁强度能够达到铝合金板接头的89%,而相同板厚时,复合材料自冲铆接头相比于铝合金接头的突出薄弱点在于其上板抵抗集中应力破坏的能力。

     

  • 图  1  自冲铆(SPR)工艺流程[26]

    Figure  1.  Process for self-piercing riveting (SPR)[26]

    图  2  典型自冲铆铆钉(a)和铆模(b)结构示意图

    Figure  2.  Typical section structure of the rivet (a) and die (b) of SPR

    图  3  自冲铆接头结构(a)及主要失效破坏形式(b)[28]

    Figure  3.  Section structure (a) and failure modes (b) for SPR joint [28]

    图  4  试验板材结构及性能:(a)碳纤维增强体结构;(b)拉伸应力-应变曲线

    Figure  4.  Structure and performance of test plates: (a) Structure of carbon fiber reinforcement; (b) Tensile stress-strain curves

    图  5  自冲铆接头拉伸剪切试样

    CFRP—Carbon fiber reinforced plastics; dc—Plate thickness

    Figure  5.  Tensile shear sample of SPR joint

    图  6  铆钉长度和硬度对CFRP-Al板自冲铆接头结构影响

    Figure  6.  Influence of rivet length and hardness on CFRP-Al plates SPR joint structure

    图  7  不同铆钉的CFRP-Al板自冲铆接头结构

    Figure  7.  CFRP-Al plates SPR joint structures with various rivets

    图  8  冲铆速度对CFRP-Al板自冲铆接头结构的影响

    Figure  8.  Influence of punching speed on CFRP-Al plates SPR joint structure

    图  9  冲铆速度V对CFRP-Al板自冲铆接头铆钉溃缩的影响

    Figure  9.  Influence of punching speed V on rivet collapse of CFRP-Al plates SPR joint

    图  10  铆模尺寸对CFRP-Al板自冲铆接头结构的影响

    Figure  10.  Influence of die dimensions on CFRP-Al plates SPR joint structure

    图  11  刺穿CFRP和铝合金上板后钉脚扩展状态:(a) 2 mm-2 mm CFRP-Al板接头,V=50 mm·s−1;(b) 2 mm-2 mm Al-Al板接头,V=140 mm·s−1

    Figure  11.  Rivet flaring state after piercing the CFRP and Al upper plate: (a) 2 mm-2 mm CFRP-Al joint, V=50 mm·s−1; (b) 2 mm-2 mm Al-Al joint, V=140 mm·s−1

    图  12  冲铆过程钉脚受力示意图:(a)未张开钉脚;(b)张开钉脚

    Figure  12.  Schematic diagram of force on rivet shank during punching process: (a) Rivet shank not flared; (b) Rivet shank flared

    图  13  低硬度铆钉的Al-Al板接头结构

    Figure  13.  Al-Al plates joint structure with low hardness rivet

    图  14  不同冲铆速度下CFRP-Al板自冲铆接头结构

    Figure  14.  CFRP-Al plates SPR joint structures under various punching speeds

    图  15  CFRP-Al板自冲铆接头结构参数随冲铆速度的变化过程:(a)刺入深度Ls和底切值;(b)钉脚张开值和钉头余高

    Figure  15.  Changing process of CFRP-Al plates SPR joint structural parameters with punching speed: (a) Penetration depth Ls and undercut; (b) Flare dimension and head height

    图  16  不同上板材料及厚度的自冲铆接头结构对比

    Figure  16.  Structural comparison of SPR joints with various upper plate materials and thicknesses

    图  17  不同上板材料及厚度的自冲铆接头载荷-位移曲线

    Figure  17.  Load-displacement curves of SPR joints with various upper plate materials and thicknesses

    图  18  不同上板材料及厚度的自冲铆接头失效破坏形貌

    Figure  18.  Failure morphologies of SPR joints with various upper plate materials and thicknesses

    图  19  塑性材料和脆性材料承受集中应力示意图:(a)受集中应力情况;(b)塑性材料对集中应力的分散;(c)脆性材料受集中应力破坏

    Figure  19.  Schematic diagram of plastic and brittle materials bearing concentrated stress: (a) Bearing concentrated stress; (b) Dispersion of concentrated stress by plastic materials; (c) Failure of brittle materials under concentrated stress

    表  1  部分对比试验编号及工艺参数设定

    Table  1.   Partial comparative test number and process parameter setting

    Numberdc/mmL/mmRivet hardness (HV)Punching speed V/(mm·s−1)rm/mmdm/mm
    1 1 5 410 225 10 2.0
    2 2 5.5 410 225 10 2.0
    3 2 6 410 225 10 2.0
    4 2 6.5 410 225 10 2.0
    5 2 6.5 290 225 10 2.0
    6 2 6.5 480 225 10 2.0
    7 3 7.5 410 225 10 2.0
    8 3 7.5 410 265 10 2.0
    9 3 7.5 410 300 10 2.0
    10 3 7.5 410 325 10 2.0
    11 3 7.5 480 300 9 1.8
    12 3 7.5 480 300 10 2.0
    13 3 7.5 480 300 9 2.0
    14 3 7.5 480 300 9 2.2
    15 2 6 480 225 10 2.0
    16* 2 6 410 225 10 2.0
    Note: Number 16* is the Al-Al plate SPR connection test.
    下载: 导出CSV
  • [1] JOOST W J. Reducing vehicle weight and improving US energy efficiency using integrated computational materials engineering[J]. JOM: The Journal of the Minerals, Metals & Materials Society,2012,64(9):1032-1038.
    [2] LI Y P, LIU H J. Material and structural optimization for engine hood inner panel of car body aimed to lightweight[C]//2010 WASE International Conference on Information Engineering. Beidai (China): Institute of Electrical and Electronics Engineers (IEEE), 2010.
    [3] 张衡, 严飙, 龚友坤, 等. 碳纤维机织物增强热塑性树脂复合材料热冲压叠层模型[J]. 复合材料学报, 2017, 34(12):2741-2746. doi: 10.13801/j.cnki.fhclxb.20170307.004

    ZHANG Heng, YAN Biao, GONG Youkun, et al. A lamination model for thermostamping of carbon woven fabric reinforced thermoplastic resin composites[J]. Acta Materiae Compositae Sinica,2017,34(12):2741-2746(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170307.004
    [4] 宋燕利, 杨龙, 郭巍, 等. 面向汽车轻量化应用的碳纤维复合材料关键技术[J]. 材料导报, 2016, 30(17):16-25, 50.

    SONG Yanli, YANG Long, GUO Wei, et al. A survey on key technologies for carbon fiber-reinforced plastics with applications to automobile lightening[J]. Materials Review,2016,30(17):16-25, 50(in Chinese).
    [5] SMAG B, JFDS A, AFA B. Friction spot joining of aluminum AA2024/carbon fiber reinforced poly(phenylene sulfide) composite single lap joints: Microstructure and mechani-cal performance[J]. Materials & Design,2014,54:196-206.
    [6] 檀财旺, 苏健晖, 冯紫微, 等. 金属与塑料激光连接的研究现状与展望[J]. 机械工程学报, 2020, 56(6):85-94. doi: 10.3901/JME.2020.06.085

    TAN Caiwang, SU Jianhui, FENG Ziwei, et al. Research status and development on laser joining of metal to plastic[J]. Journal of Mechanical Engineering,2020,56(6):85-94(in Chinese). doi: 10.3901/JME.2020.06.085
    [7] 金启豪, 陈娟, 彭立明, 等. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1):15-24. doi: 10.11868/j.issn.1001-4381.2021.000524

    JIN Qihao, CHEN Juan, PENG Liming, et al. Research progress in joining of carbon fiber reinforced polymer compo-sites and aluminum/magnesium alloys[J]. Journal of Materials Engineering,2022,50(1):15-24(in Chinese). doi: 10.11868/j.issn.1001-4381.2021.000524
    [8] BUDHE S, BANEA M D, BARROS S D, et al. An updated review of adhesively bonded joints in composite materials[J]. International Journal of Adhesion and Adhesives,2016,72:30-42.
    [9] 罗书舟. 冲击载荷下碳纤维复合材料胶接接头力学性能研究[D]. 长沙: 湖南大学, 2015.

    LUO Shuzhou. Study on mechanical properties of bonded joints of carbon fiber reinforced plastics under impact loading[D]. Changsha: Hunan University, 2015(in Chinese).
    [10] ABE Y, KATO T, MORI K. Self-piercing riveting of high tensile strength steel and aluminium alloy sheets using conventional rivet and die[J]. Journal of Materials Processing Technology,2009,209(8):3914-3922. doi: 10.1016/j.jmatprotec.2008.09.007
    [11] MORI K I, ABE Y. A review on mechanical joining of aluminium and high strength steel sheets by plastic deformation[J]. International Journal of Lightweight Materials and Manufacture,2018,1(1):1-11. doi: 10.1016/j.ijlmm.2018.02.002
    [12] BARNES T A, PASHBY I R. Joining techniques for aluminium spaceframes used in automobiles: Part II-adhesive bonding and mechanical fasteners[J]. Journal of Materials Processing Technology,2000,99(1-3):72-79. doi: 10.1016/S0924-0136(99)00361-1
    [13] LIVAN F, VINCENZO F R. Self-piercing riveting for aluminium alloys-composites hybrid joints[J]. International Journal of Advanced Manufacturing Technology,2009,43(1):61-66.
    [14] 张凯, 闵峻英, 林建平, 等. CFRP与AA6022-T4铝合金的自冲铆接接头力学性能分析[J]. 锻压技术, 2019, 44(1):150-156. doi: 10.13330/j.issn.1000-3940.2019.01.024

    ZHANG Kai, MIN Junying, LIN Jianping, et al. Analysis on mechanical properties of self-piercing riveted joints for carbon fiber reinforced polymer and AA6022-T4 aluminum alloy[J]. Forging & Stamping Technology,2019,44(1):150-156(in Chinese). doi: 10.13330/j.issn.1000-3940.2019.01.024
    [15] 张杰, 何晓聪, 丁文有. 碳纤维板材与轻合金板材自冲铆接头性能研究[J]. 兵器材料科学与工程, 2018, 41(3):48-51. doi: 10.14024/j.cnki.1004-244x.20180428.006

    ZHANG Jie, HE Xiaocong, DING Wenyou. Mechanical properties of self-piercing riveted joint of carbon fiber composites and light alloy sheet[J]. Ordnance Material Science and Engineering,2018,41(3):48-51(in Chinese). doi: 10.14024/j.cnki.1004-244x.20180428.006
    [16] 黄志超, 程露, 胡义华. 铝合金与碳纤维复合材料自冲铆接强度影响因素研究[J]. 塑料工业, 2019, 47(5):72-76, 106. doi: 10.3969/j.issn.1005-5770.2019.05.015

    HUANG Zhichao, CHENG Lu, HU Yihua. Influencing factors of joining strength of self-piercing riveting aluminium alloy and carbon fiber composites[J]. China Plastics Industry,2019,47(5):72-76, 106(in Chinese). doi: 10.3969/j.issn.1005-5770.2019.05.015
    [17] LIU Y, ZHUANG W M . Self-piercing riveted-bonded hybrid joining of carbon fibre reinforced polymers and aluminium alloy sheets[J]. Thin-Walled Structures,2019,144(11):106340.1-106340.11.
    [18] FRANCO G D, FRATINI L, PASTA A. Analysis of the mechanical performance of hybrid (SPR/bonded) single-lap joints between CFRP panels and aluminum blanks[J]. International Journal of Adhesion and Adhesives,2013,41(1):24-32.
    [19] LIANG J, JING A H, ZHANG J, et al. Investigations on mechanical properties and micro-topography of electromagne-tic self-piercing riveted joints with carbon fiber reinforced plastics/aluminum alloy 5052[J]. Archives of Civil and Mechanical Engineering,2019,19(1):240-250. doi: 10.1016/j.acme.2018.11.001
    [20] RAO H M, KANG J, GARRET H, et al. Impact of rivet head height on the tensile and fatigue properties of lap shear self-pierced riveted CFRP to aluminum[J]. Sae International Journal of Materials & Manufacturing,2017,10(2):167-173.
    [21] FRANCO G D, FRATINI L, PASTA A, et al. On the self-piercing riveting of aluminium blanks and carbon fibre composite panels[J]. International Journal of Material Forming,2013,6:137-144. doi: 10.1007/s12289-011-1067-2
    [22] ZHANG X, HE X, XING B, et al. Pre-holed self-piercing riveting of carbon fibre reinforced polymer laminates and commercially pure titanium sheets[J]. Journal of Materials Processing Technology,2019,279:116550.
    [23] 梁钜松. 电磁自冲铆接工艺及剪切力学性能研究[D]. 长沙: 湖南大学, 2019.

    LIANG Jusong. Study on technology and shear mechanical properties of electromagnetic self-piercing riveting[D]. Changsha: Hunan University, 2019(in Chinese).
    [24] JIANG H, GAO S, LI G, et al. Structural design of half hollow rivet for electromagnetic self-piercing riveting process of dissimilar materials[J]. Materials & Design,2019,183:108141.
    [25] 刘洋, 庄蔚敏. 碳纤维增强树脂复合材料和铝合金温热自冲铆接工艺及接头力学性能[J]. 复合材料学报, 2021, 38(11):3563-3577. doi: 10.13801/j.cnki.fhclxb.20210105.002

    LIU Yang, ZHUANG Weimin. Joining process and mechanical properties of warm self-piercing riveting for carbon fiber reinforced polymer and aluminum alloy[J]. Acta Materiae Compositae Sinica,2021,38(11):3563-3577(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210105.002
    [26] PORCARO R, HANSSEN A G, LANGSRTH M, et al. The behavior of a self-piercing riveted connection under quasi-static loading conditions[J]. International Journal of Solids and Structures,2006,43(17):5110-5131. doi: 10.1016/j.ijsolstr.2005.10.006
    [27] 申仲达. 铝合金车身自冲铆工艺与力学性能研究[D]. 合肥: 合肥工业大学, 2018.

    SHEN Zhongda. Study on self-piercing riveting and mechanical properties of aluminum alloy body[D]. Hefei: Hefei University of Technology, 2018(in Chinese).
    [28] HEIMBS S, SCHMEER S, BLAUROCK J, et al. Static and dynamic failure behavior of bolted joints in carbon fibre composites[J]. Composites Part A: Applied Science & Manufacturing,2013,47:91-101.
    [29] 毛晓东, 刘庆永, 李利, 等. 5182-O铝合金板材自冲铆接工艺参数对接头组织和性能的影响[J]. 中国有色金属学报, 2021, 31(5):1239-1252. doi: 10.11817/j.ysxb.1004.0609.2021-37816

    MAO Xiaodong, LIU Qingyong, LI Li, et al. Effects of technological parameters on microstructure and properties of self-piercing riveting joints of 5182-O aluminum alloy sheets[J]. Chinese Journal of Nonferrous Metals,2021,31(5):1239-1252(in Chinese). doi: 10.11817/j.ysxb.1004.0609.2021-37816
    [30] 石佩洛, 尚呈元, 陈亮, 等. 碳纤维截面特性对碳纤维/环氧树脂复合材料压缩强度的影响[J]. 复合材料学报, 2021, 38(12):4052-4059. doi: 10.13801/j.cnki.fhclxb.20210203.001

    SHI Peiluo, SHANG Chengyuan, CHEN Liang, et al. Compressive strength of carbon fiber reinforced epoxy compo-sites with various carbon fiber cross section characteristics[J]. Acta Materiae Compositae Sinica,2021,38(12):4052-4059(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210203.001
    [31] 朱文墨, 李刚, 杨小平, 等. 连续纤维增强树脂复合材料纵向压缩强度预测模型的发展及其影响因素[J]. 复合材料学报, 2020, 37(1):1-15. doi: 10.13801/j.cnki.fhclxb.20190917.004

    ZHU Wenmo, LI Gang, YANG Xiaoping, et al. Development of prediction model and influencing factors of longitudinal compressive strength for continuous fiber reinforced polymer composites[J]. Acta Materiae Compositae Sinica,2020,37(1):1-15(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190917.004
    [32] PRAMANIK A, BASAK A K, DONG Y, et al. Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys—A review[J]. Composites Part A: Applied Science and Manufacturing,2017,101:1-29. doi: 10.1016/j.compositesa.2017.06.007
    [33] REZWANUL H. Quality of self-piercing riveting (SPR) joints from cross-sectional perspective: A review[J]. Archives of Civil and Mechanical Engineering,2018,18(1):83-93. doi: 10.1016/j.acme.2017.06.003
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  669
  • HTML全文浏览量:  278
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 修回日期:  2022-10-26
  • 录用日期:  2022-11-03
  • 网络出版日期:  2022-11-11
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回