留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多核稀土离子掺杂有机配合物转光剂的制备与应用

周明明 刘威 杨成祥 赵修贤 杨震 路翔翔 蒋绪川

周明明, 刘威, 杨成祥, 等. 多核稀土离子掺杂有机配合物转光剂的制备与应用[J]. 复合材料学报, 2023, 40(4): 2131-2139. doi: 10.13801/j.cnki.fhclxb.20220519.001
引用本文: 周明明, 刘威, 杨成祥, 等. 多核稀土离子掺杂有机配合物转光剂的制备与应用[J]. 复合材料学报, 2023, 40(4): 2131-2139. doi: 10.13801/j.cnki.fhclxb.20220519.001
ZHOU Mingming, LIU Wei, YANG Chengxiang, et al. Preparation and application of multinuclear rare earth ion doped organic complex light conversion agents[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2131-2139. doi: 10.13801/j.cnki.fhclxb.20220519.001
Citation: ZHOU Mingming, LIU Wei, YANG Chengxiang, et al. Preparation and application of multinuclear rare earth ion doped organic complex light conversion agents[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2131-2139. doi: 10.13801/j.cnki.fhclxb.20220519.001

多核稀土离子掺杂有机配合物转光剂的制备与应用

doi: 10.13801/j.cnki.fhclxb.20220519.001
基金项目: 济南大学科技计划项目(XKY2068-140200568);济南大学学科重大课题(1420702)
详细信息
    通讯作者:

    刘威,博士,讲师,研究方向为有机共轭发光材料的设计合成及性能表征 E-mail: ism_liuw@ujn.edu.cn

    蒋绪川,博士,教授,博士生导师,研究方向为智能材料的研究和工程化应用 E-mail: ism_jiangxc@ujn.edu.cn

  • 中图分类号: TB332

Preparation and application of multinuclear rare earth ion doped organic complex light conversion agents

Funds: Science and Technology Program of University of Jinan (XKY2068-140200568); Major Subject of the University of Jinan (1420702)
  • 摘要: 为加快实现农业新旧动能转换,建设现代农业强国,转光农膜一直被作为“光学农业”领域的重要研究方向之一。转光农膜的制备需要具有良好耐候性和优异转光特性的转光剂,但是现有的转光剂存在发射光谱单一和发射范围窄的问题,这导致转光剂的发射光谱与植物光合作用吸收光谱匹配度较差,严重限制了转光农膜的发展。本文合成了一类以水杨酸和邻菲啰啉为配体、多种稀土离子(Sm3+、Eu3+和Y3+)掺杂的有机配合物(转光剂)发光材料。数据表明,通过Sm3+的掺入显著拓宽了该类转光剂的荧光光谱。利用吹塑法将合成的转光剂掺入乙烯-1-己烯共聚物(PO)薄膜中,制备了具有紫外光转红光作用的转光农膜。采用FTIR和XPS确定转光剂的成分和结构组成。同时利用TGA55和组合式瞬态/稳态荧光光谱仪(FLS920)对转光剂和转光农膜的热稳定性和光学性质进行表征。测试结果表明,合成的转光剂可以吸收紫外光(波长λ=250~400 nm)并发射出红光(λ=610~660 nm),该光谱性质与植物光合作用在红光区的吸收光谱匹配性较高,并且利用该类转光剂制备的转光农膜仍旧保持了良好的发光性能,这将有利于转光剂在农膜领域中的推广和应用。本文为拓宽转光剂荧光发射范围,提高与植物光合作用在红光波段吸收光谱的匹配度,提供了一种切实可行的方法,并将转光剂成功应用于制备转光农膜,达到了较好的紫外转红光的目的。

     

  • 图  1  转光剂和配体红外光谱:(a) 转光剂1~7的FTIR光谱;(b) 转光剂8~10、配体水杨酸(Hsal)和邻菲啰啉(Phen)的FTIR光谱

    Figure  1.  FTIR spectra of light conversion agents and ligands: (a) FTIR spectra of light conversion agents 1-7; (b) FTIR spectra of light conversion agents 8-10, ligands salicylic acid (Hsal) and o-phenanthroline (Phen)

    图  2  Eu0.4Sm0.5Y0.1(Hsal)3Phen的XPS图谱:(a) 总谱;(b) Eu3d;(c) Y3d;(d) Sm3d;(e) N1s;(f) O1s

    Figure  2.  XPS spectra of Eu0.4Sm0.5Y0.1(Hsal)3Phen: (a) Total spectrum; (b) Eu3d; (c) Y3d; (d) Sm3d; (e) N1s; (f) O1s

    图  3  转光剂的配位结构Ln3+ (Eu3+、Sm3+和Y3+)

    Figure  3.  Coordination structure Ln3+ (Eu3+, Sm3+ and Y3+) of light conversion agents

    图  4  转光剂的归一化激发光谱:(a) 转光剂1~5的激发光谱;(b) 转光剂6~10的激发光谱

    Figure  4.  Normalized excitation spectra of light conversion agents: (a) Excitation spectra of light conversion agents 1-5; (b) Excitation spectra of light conversion agents 6-10

    6H5/2, 4L17/2, 4K11/2, 4M19/2—Sm3+ energy level state; 7F0, 5L6, 5D3—Eu3+ energy level state

    图  5  转光剂的归一化荧光发射光谱:(a) 转光剂1~10的发射光谱;(b) 转光剂1、4和8的发射光谱

    Figure  5.  Normalized fluorescence emission spectra of light conversion agents: (a) Emission spectra of light conversion agents 1-10; (b) Emission spectra of light conversion agents 1, 4 and 8

    4G5/2, 6H5/2, 6H7/2, 6H9/2—Sm3+ energy level state; 5D0, 7F1, 7F2—Eu3+ energy level state

    图  6  转光剂的热失重曲线(转光剂1~10)

    Figure  6.  Thermogravimetric curves of light conversion agents (Light conversion agents 1-10)

    图  7  转光农膜和转光剂的归一化激发光谱和荧光发射光谱:(a) 转光农膜1、4和8的激发光谱;(b) 转光剂1、4、8和相应转光农膜的荧光发射光谱

    Figure  7.  Normalized excitation spectra and fluorescence emission spectra of light conversion agents and light conversion agricultural film: (a) Excitation spectra of light conversion agricultural film 1, 4 and 8; (b) Fluorescence emission spectra of light conversion agents 1, 4, 8 and corresponding light conversion agricultural film

    表  1  转光剂的实验编号

    Table  1.   Sample numbers of light conversion agents

    Type of light conversion agentX/mmolY/mmolProducts
    10.10.8Eu0.1Sm0.8Y0.1(Hsal)3Phen
    20.20.7Eu0.2Sm0.7Y0.1(Hsal)3Phen
    30.30.6Eu0.3Sm0.6Y0.1(Hsal)3Phen
    40.40.5Eu0.4Sm0.5Y0.1(Hsal)3Phen
    50.50.4Eu0.5Sm0.4Y0.1(Hsal)3Phen
    60.60.3Eu0.6Sm0.3Y0.1(Hsal)3Phen
    70.70.2Eu0.7Sm0.2Y0.1(Hsal)3Phen
    80.80.1Eu0.8Sm0.1Y0.1(Hsal)3Phen
    90.90.0Eu0.9Y0.1(Hsal)3Phen
    100.00.9Sm0.9Y0.1(Hsal)3Phen
    Notes: X—Eu3+ millimolar quantity; Y—Sm3+ millimolar quantity.
    下载: 导出CSV
  • [1] ZHU X, ZHANG J, LIU J, et al. Recent progress of rare-earth doped upconversion nanoparticles: Synthesis, optimization, and applications[J]. Advanced Science,2019,6(22):1901358. doi: 10.1002/advs.201901358
    [2] ZHOU B, LI Q, YAN L, et al. Controlling upconversion through interfacial energy transfer (IET): Fundamentals and applications[J]. Journal of Rare Earths,2020,38(5):474-482. doi: 10.1016/j.jre.2020.01.009
    [3] WEN S, ZHOU J, SCHUCK P J, et al. Future and challenges for hybrid upconversion nano systems[J]. Nature Photonics,2019,13(12):828-838. doi: 10.1038/s41566-019-0528-x
    [4] ZHANG Y, ZHU J, LI S, et al. Achievement of giant cryogenic refrigerant capacity in quinary rare-earths based high-entropy amorphous alloy[J]. Journal of Materials Science & Technology,2022,102:66-71.
    [5] WANG M, ZENG G, ZHANG X, et al. A new family of Ln-BTC-AC-FM framework intelligent materials: Precise synthesis, structure and characterization for fluorescence detecting of UO22+ and adsorbing dyes[J]. Journal of Molecular Structure,2021,1238:130422. doi: 10.1016/j.molstruc.2021.130422
    [6] ZENG Z S, ZHANG X D, LUO G Y, et al. Chromone@cucurbit[7]uril triggers the luminescence of lanthanides in water[J]. Journal of Materials Chemistry C,2021,9(19):6160-6165. doi: 10.1039/D1TC00664A
    [7] KASPRZYCKA E, ASSUNOS I P, BREDOL M, et al. Preparation, characterization and optical properties of rare earth complexes with derivatives of N-phenylanthranilic acid[J]. Journal of Luminescence,2020,232:117818.
    [8] 张浩, 杨小妮. 棕榈醇-棕榈酸-月桂酸@(Ce-La-TiO2)光-热-湿复合材料的制备与表征[J]. 复合材料学报, 2018, 35(6):1542-1548.

    ZHANG Hao, YANG Xiaoni. Preparation and characterization of hexadecanol-palmitic acid-lauric acid@(Ce-La-TiO2) photocatalytic-heat-mositure composites[J]. Acta Materiae Compositae Sinica,2018,35(6):1542-1548(in Chinese).
    [9] WOLFF N E, PRESSLEY R J. Optical maser action in an Eu3+ containing organic matrix[J]. Applied Physics Letters,1963,2(8):152-154. doi: 10.1063/1.1753821
    [10] BRIDOU L, NIELSEN L G, SØRENSEN T J. Using europium (III) complex of 1,4,7,10-tetraazacyclododecane-1,4,7-triacedic acid Eu.DO3A as a luminescent sensor for bicarbonate[J]. Journal of Rare Earths,2020,38(5):498-505. doi: 10.1016/j.jre.2019.11.017
    [11] 陈颖, 李菲菲, 李春光, 等. 稀土上转换发光材料标记抗体的制备及在免疫组化中的应用[J]. 高等学校化学学报, 2013, 34(4):788-793.

    CHEN Ying, LI Feifei, LI Chunguang, et al. Preparation of up-conversion luminescent material labeled antibody and its application in immunohistochemistry[J]. Chemical Journal of Chinese Universities,2013,34(4):788-793(in Chinese).
    [12] WU W, ZHANG Z, DONG R, et al. Characterization and properties of a Sr2Si5N8∶Eu2+-based light-conversion agricultural film[J]. Journal of Rare Earths,2020,38(5):539-545. doi: 10.1016/j.jre.2020.01.020
    [13] 李哲峰, 张洪杰. 稀土有机配合物电致发光研究进展[J]. 高等学校化学学报, 2008, 29(12):2597-2608. doi: 10.3321/j.issn:0251-0790.2008.12.051

    LI Zhefeng, ZHANG Hongjie. Advance in lanthanide complexes based electroluminescent devices[J]. Chemical Journal of Chinese Universities,2008,29(12):2597-2608(in Chinese). doi: 10.3321/j.issn:0251-0790.2008.12.051
    [14] 陈平, 张东兴, 韩丽洁. 稀土有机化合物/酸酐/环氧树脂体系固化反应和固化物性能的研究[J]. 复合材料学报, 1997, 14(4):33-37. doi: 10.3321/j.issn:1000-3851.1997.04.007

    CHEN Ping, ZHANG Dongxing, HAN Lijie. Study of curing and cured compound of rare earth organometallic compound/anhydride/epoxy resin system[J]. Acta Materiae Compositae Sinica,1997,14(4):33-37(in Chinese). doi: 10.3321/j.issn:1000-3851.1997.04.007
    [15] GUSEV A N, SHUL'GIN V F, MESHKOVA S B, et al. Structural and photophysical studies on ternary Sm(III), Nd(III), Yb(III), Er(III) complexes containing pyridyltriazole ligands[J]. Polyhedron,2012,47(1):37-45. doi: 10.1016/j.poly.2012.08.034
    [16] ZHAO S, ZHANG Y, ZANG Z. Room-temperature doping of ytterbium into efficient near-infrared emission CsPbBr1.5Cl1.5 perovskite quantum dots[J]. Chemical Communications,2020,56(43):5811-5814. doi: 10.1039/D0CC01193B
    [17] 景慧, 闫宝宝, 路红霞, 等. 稀土转光农膜对促进蔬菜西葫芦提质增效的研究与应用[J]. 内蒙古科技与经济, 2020(6):79-82.

    JING Hui, YAN Baobao, LU Hongxia, et al. Study and application of rare earth light conversion agricultural film to improve the quality and efficiency of Zucchini[J]. Inner Mongolia Science Technology & Economy,2020(6):79-82(in Chinese).
    [18] 刘威, 蒋绪川, 周明明, 等. 一种转光母粒及制备方法及采用转光母粒制备的转光农膜: 中国, CN202010533017.9[P]. 2020-09-04.

    LIU Wei, JIANG Xuchuan, ZHOU Mingming, et al. The invention relates to a light conversion masterbatch and a preparation method thereof, and a light conversion agricultural film prepared by using the light conversion masterbatch: Chinese patent, CN202010533017.9[P]. 2020-09-04(in Chinese).
    [19] PARRA D F, BRITO H F, MATOS J D R, et al. Enhancement of the luminescent intensity of the novel system containing Eu3+-β-diketonate complex doped in the epoxy resin[J]. Journal of Applied Polymer Science,2002,83(12):2716-2726. doi: 10.1002/app.10252
    [20] PORGRED R, FINKELSHTEIN B, SHMUKLER Y, et al. Low-density polyethylene films doped with europium (III) complex: Their properties and applications[J]. Polymers for Advanced Technologies,2004,15(7):414-418. doi: 10.1002/pat.488
    [21] 李玮, 程先华. 稀土Ce接枝碳纳米管-碳纤维多尺度增强体对环氧树脂基复合材料界面性能的影响[J]. 复合材料学报, 2020, 37(11):2789-2797.

    LI Wei, CHENG Xianhua. Effect of rare earth Ce grafted carbon nanotubes-carbon fiber multi-scale reinforcement[J]. Acta Materiae Compositae Sinica,2020,37(11):2789-2797(in Chinese).
    [22] 钟伟婷, 王智鑫, 王堃, 等. 纳米纤维素发光材料研究进展[J]. 复合材料学报, 2022, 39(1):39-47.

    ZHONG Weiting, WANG Zhixin, WAGN Kun, et al. Research progress of nanocellulose-based luminescent materials[J]. Acta Materiae Compositae Sinica,2022,39(1):39-47(in Chinese).
    [23] SIMPSON K. Stabilizing agricultural films: A question of balance[J]. Plastics Additives and Compounding,2003,5(4):20-23. doi: 10.1016/S1464-391X(03)00432-X
    [24] LAPAEV D V, NIKIFOROV V G, LOBKOV V S, et al. Reusable temperature-sensitive luminescent material based on vitrified film of europium (III) β-diketonate complex[J]. Optical Materials,2018,75:787-795. doi: 10.1016/j.optmat.2017.11.042
    [25] 卞祖强, 黄春辉. 影响稀土配合物电致发光性能的几个重要因素[J]. 中国稀土学报, 2004, 22(1):7-16. doi: 10.3321/j.issn:1000-4343.2004.01.002

    BIAN Zuqiang, HUANG Chunhui. Several important factors influencing electroluminescent efficiency of lanthanide complexes[J]. Journal of the Chinese Society of Rare Earths,2004,22(1):7-16(in Chinese). doi: 10.3321/j.issn:1000-4343.2004.01.002
    [26] GRONDELLE R V, BOEKER E. Limits on natural photosynthesis[J]. The Journal of Physical Chemistry B,2017,121(30):7229-7234. doi: 10.1021/acs.jpcb.7b03024
    [27] 廉世勋, 李承志, 毛向辉, 等. CaS∶Eu 绿转红功能的农用研究[J]. 稀土, 2002, 23(3):37-40. doi: 10.3969/j.issn.1004-0277.2002.03.011

    LIAN Shixun, LI Chengzhi, MAO Xianghui, et al. On application of converting green to red of CaS∶Eu in agriculture[J]. Chinese Rare Earths,2002,23(3):37-40(in Chinese). doi: 10.3969/j.issn.1004-0277.2002.03.011
    [28] MARIZ-PONTE N, MARTINS S, GONCALVES A, et al. The potential use of the UV-A and UV-B to improve tomato quality and preference for consumers[J]. Scientia horticulturae,2018,246:777-784.
    [29] DOGUTAN D K, NOCERA D G. Artificial photosynthesis at efficiencies greatly exceeding that of natural photosynthesis[J]. Accounts of Chemical Research,2019,52(11):3143-3148. doi: 10.1021/acs.accounts.9b00380
    [30] DONG R, LI Y, LI W, et al. Recent developments in luminescent nanoparticles for plant imaging and photosynthesis[J]. Journal of Rare Earths,2019,37(9):903-915. doi: 10.1016/j.jre.2019.04.001
    [31] BARON M, TUBARO C, BASATO M, et al. Dinuclear N-heterocyclic dicarbene gold complexes in I-III and III-III oxidation states: Synthesis and structural analysis[J]. Organometallics,2011,30(17):4607-4615. doi: 10.1021/om2004145
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  768
  • HTML全文浏览量:  524
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-01
  • 修回日期:  2022-04-30
  • 录用日期:  2022-05-08
  • 网络出版日期:  2022-05-19
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回