留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NiFe-植酸复合物的室温制备及其全解水电催化性能

陈莹玉 刘怡君 陈晨欣 汪庆祥 高凤 孙伟

陈莹玉, 刘怡君, 陈晨欣, 等. NiFe-植酸复合物的室温制备及其全解水电催化性能[J]. 复合材料学报, 2022, 40(0): 1-11
引用本文: 陈莹玉, 刘怡君, 陈晨欣, 等. NiFe-植酸复合物的室温制备及其全解水电催化性能[J]. 复合材料学报, 2022, 40(0): 1-11
Yingyu CHEN, Yijun LIU, Chenxin CHEN, Qingxiang WANG, Feng GAO, Wei SUN. Room temperature preparation of NiFe-phytic acid composite and its electrocatalytic performance for overall water splitting[J]. Acta Materiae Compositae Sinica.
Citation: Yingyu CHEN, Yijun LIU, Chenxin CHEN, Qingxiang WANG, Feng GAO, Wei SUN. Room temperature preparation of NiFe-phytic acid composite and its electrocatalytic performance for overall water splitting[J]. Acta Materiae Compositae Sinica.

NiFe-植酸复合物的室温制备及其全解水电催化性能

基金项目: 国家自然科学基金 (20805041);福建省自然科学基金(2019J05108)
详细信息
    通讯作者:

    高凤,博士,副教授,硕士生导师,研究方向为有机-无机复合纳米材料及电化学性能纳米电化学 E-mail: fgao1981@126.com

  • 中图分类号: TB331

Room temperature preparation of NiFe-phytic acid composite and its electrocatalytic performance for overall water splitting

  • 摘要: 制备高稳定性、高活性双功能催化剂用于全解水制氢是氢能源大规模商业化应用的重要环节之一。本文以植酸(PA)、六水合氯化铁(FeCl3·6H2O)和六水合氯化镍(NiCl2·6H2O)为原料,采用两步室温浸渍法在泡沫镍(NF)上制备了片状无定形植酸-镍铁双金属复合材料(NiFe-PA)。采用线性扫描伏安法(LSV)考察了NiFe-PA修饰NF电极(NiFe-PA/NF)在碱性条件(1.0 mol/L KOH)的电解水催化性能。实验结果表明,由于NiFe双金属之间的协同效应,NiFe-PA/NF作为双功能催化剂显示出优越的析氧和析氢性能。NiFe-PA/NF电极在50 mA·cm−2电流密度下析氧反应的过电位仅需220 mV;在10 mA·cm−2电流密度下的析氢反应的过电位为135 mV。将NiFe-PA/NF组装成双电极系统用于全解水,达到10 mA·cm−2电流密度的电池电压仅需1.61 V,低于贵金属催化剂体系RuO2/NF||Pt-C/NF(1.64 V),同时,可满足2 V太阳能电池板在太阳光照条件下的驱动产氢。另外,基于PA金属配合物的高稳定性和抗腐蚀性能,NiFe-PA/NF在100 mA·cm−2电流密度下的析氧反应和析氢反应催化稳定性可至少分别维持175 h和75 h,表明NiFe-PA/NF在高电流密度下具有高催化稳定性。

     

  • 图  1  植酸-镍铁双金属复合材料修饰泡沫镍电极(NiFe-PA/NF)电极的制备流程图

    Figure  1.  Illustration of the preparation process of phytic acid-nickel iron bimetallic composites modified foamed nickel electrode NiFe-PA/NF composites

    图  2  NiFe-PA/NF、PA/NF和NF的XRD谱(a),NiFe-PA/NF和PA/NF的ATR-FTIR图谱(b)

    Figure  2.  XRD spectra (a) of NiFe-PA/NF, PA/NF and NF and ATR-FTIR (b) of NiFe-PA/NF and PA/NF

    图  3  NF(a)、PA/NF(b)和NiFe-PA/NF(c)的SEM图;NiFe-PA/NF元素分布图(d-h);NiFe-PA的TEM图(i-k)

    Figure  3.  SEM images of NF(a), PA/NF(b) and NiFe-PA/NF(c); Element Mapping diagrams(d-h) of NiFe-PA/NF and TEM images(i-k) of NiFe-PA

    图  4  NiFe-PA/NF的XPS全谱图(a)和O 1s(b)、Fe 2p(c)、Ni 2p(d)高分辨能谱图

    Figure  4.  Full scan(a), and high-resolution O 1s(b), Fe 2p(c) and Ni 2p(d) XPS spectra of NiFe-PA/NF

    图  5  NiFe-PA/NF、Ni-PA/NF、Fe-PA/NF、PA/NF、RuO2/NF和NF在1.0 mol/L KOH电解液中析氧反应的LSV曲线(a)及相应的Tafel斜率曲线(b). NiFe-PA/NF在CV循环2 000圈前后的LSV对比曲线(c),及在100 mA·cm−2下的电位-时间(P-T)曲线(d)

    Figure  5.  LSVs of NiFe-PA/NF, PA/NF, Ni-PA/NF, Fe-PA/NF, RuO2/NF and NF in 1.0 mol/L KOH for OER(a), and the corresponding Tafel slope curves(b). Comparison of LSV curves of NiFe-PA/NF before and after 2 000 cycles of CV(c), and the potential-time (P-T) curve at 100 mA·cm−2(d)

    图  6  NiFe-PA/NF、Ni-PA/NF、Fe-PA/NF、PA/NF、Pt-C/NF和NF在1.0 mol/L KOH电解液中的析氢LSV曲线(a)及相对应的Tafel斜率曲线(b).NiFe-PA/NF在CV循环2 000圈前后的LSV曲线(c)和在−100 mA·cm−2下的P-T曲线(d)

    Figure  6.  LSVs of NiFe-PA/NF, PA/NF, Ni-PA/NF, Fe-PA/NF, Pt-C/NF and NF in 1.0 mol/L KOH for HER(a), and the corresponding Tafel curves(b). LSVs of NiFe-PA/NF before and after 2 000 cycles of CV(c), and its P-T curve at −100 mA·cm−2(d)

    图  7  NiFe-PA/NF OER/HER稳定性测试前后的Fe(a)、Ni(b)的XPS 光谱

    Figure  7.  XPS spectra of Fe(a), Ni(b) for the NiFe-PA/NF before and after OER test

    图  8  NiFe-PA/NF、Ni-PA/NF、Fe-PA/NF、PA/NF和NF在0.55 V(a),-1.05 V(b) (vs. Hg/HgO)下的EIS曲线;NiFe-PA/NF在不同扫速下的CV图(c)、NiFe-PA/NF、Ni-PA/NF、Fe-PA/NF、PA/NF和NF在0.98 V(vs. RHE)电位下阳极和阴极电流的差值(Δj)与扫速(v)的关系曲线图(d)

    Figure  8.  EIS spectra of NiFe-PA/NF, PA/NF, Ni-PA/NF,Fe-PA/NF and NF at 0.55 V(a) and -1.05 V(b)(vs. Hg/HgO), respectively. CVs of NiFe-PA/NF at different scanning rates (c), and the relationships between Δjj = ja-jc) and v at 0.98 V (vs. RHE)(d)

    图  9  不同电极的全解水LSV曲线图(a),NiFe-PA/NF电极在10 mA·cm−2电流密度下进行的P-T测试图(b)(插图为NiFe-PA/NF两电极系统连接太阳能电池板(电压输出:2V)的电解水装置图)

    Figure  9.  LSVs of the overall water electrolysis by different electrodes(a). P-T curve of NiFe-PA/NF||NiFe-PA/NF at the current density of 10 mA·cm−2(b), and the overall water electrolysis with NiFe-PA/NF||NiFe-PA/NF driven by solar cell(voltage output: 2 V) (Inset).

    表  1  NiFe-PA与文献中铁基双功能催化剂性能比较

    Table  1.   Comparisons of catalytic performance between NiFe-PA and the reported Fe-based bifunctional catalysts

    Catalysts
    OERHERRefs.
    η50/mVη10/mV
    Fe–Co–O/Co>25711231
    Ni–MoxC>32816232
    Fe–NiO>30518333
    Fe-Ni5P4/NiFeOH>22119134
    NiFeP>28028235
    CoFeZrO>26410436
    FeCo>28316337
    NiFe-PA220135This work
    Notes: η50/η10−the overpotentials at current density of 50 mA·cm−2 or 10 mA·cm−2
    下载: 导出CSV
  • [1] SENGENI A, SUBRATA B, SUGURU N. “The Fe Effect”: A review unveiling the cri-tical roles of Fe in enhancing OER activity of Ni and Co based catalysts[J]. Nano Energy,2021,80:105514. doi: 10.1016/j.nanoen.2020.105514
    [2] ZHANG J, ZHANG Q Y, FENG X L. Support and interface effects in water splitting electrocatalysts[J]. Advanced Materials,2019,31(31):1808167. doi: 10.1002/adma.201808167
    [3] XU Y L, Wang C, Huang Y H, et al. Recent advances in electrocatalysts for neutral and large-current-density water electrolysis[J]. Nano Energy,2020,80:105545.
    [4] 曾庆乐, 刘小超, 刘超, 等. Co2Ni1O4/不锈钢复合材料的制备及其电催化析氧性能[J]. 复合材料学报, 2021, 38(11):3764-3774.

    ZENG Qingle, LIU Xiaochao, LIU Chao, et al. Synthesis and electrocatalytic oxygen evolution performances of Co2Ni1O4/stainless steel composites[J]. Acta Materiae Compositae Sinica,2021,38(11):3764-3774(in Chinese).
    [5] ZOU Z H, WANG T T, ZHAO X H, et al. Expediting in-situ electrochemical activation of two-dimensional metal-organic frameworks for enhanced OER intrinsic activity by iron incorporation[J]. ACS Catalysis,2019,9(8):7356-7364. doi: 10.1021/acscatal.9b00072
    [6] KIM M, CHOI E, SO J, et al. Improvement of corrosion properties of plasma in an aluminum alloy 6061-T6 by phytic acid anodization temperature[J]. Journal of Materials Research and Technology,2021,11:219-226. doi: 10.1016/j.jmrt.2020.12.086
    [7] CAI C, WANG M Y, HAN S B, et al. Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoOx nanosheets[J]. ACS Catalysis,2021,11(1):123-130. doi: 10.1021/acscatal.0c04656
    [8] HU Y D, LUO G, WANG L G, et al. Single Ru atoms stabilized by hybrid amorphous/Crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution[J]. Advanced Energy Materials,2021,11(1):2002816. doi: 10.1002/aenm.202002816
    [9] GONG L, KOH J, YEO B S, Mechanistic study of the synergy between iron and transition metals for the catalysis of the oxygen evolution reaction[J]. ChemSusChem, 2018, 11(21): 3790-3795.
    [10] LIU X H, YIN Q Z, DAI C C, et al. Amorphous bimetallic phosphate–carbon precatalyst with deep self-reconstruction toward efficient oxygen evolution reaction and Zn–Air batteries[J]. ACS Sustainable Chemistry & Engineering,2021,9(15):5345-5355.
    [11] KIM U B, DA J J, JEON H J, et al. Synergistic dual transition metal catalysis[J]. Chemical Reviews,2020,120(24):13382-13433. doi: 10.1021/acs.chemrev.0c00245
    [12] 涂言言, 赵子涵, 孙一强. FeOOH-Ni(OH)2 复合材料的制备及其电催化析氧性能[J]. 复合材料学报, 2020, 37(8):1944-1950.

    TU Yanyan, ZHAO Zihan, SUN Yiqiang. Synthesis and electrocatalytic oxygen evolution performances of FeOOH-Ni(OH)2 composites[J]. Acta Materiae Compositae Sinica,2020,37(8):1944-1950(in Chinese).
    [13] LIU J L, ZHU D D, LING T, et al. S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH[J]. Nano Energy,2017,40:264-273. doi: 10.1016/j.nanoen.2017.08.031
    [14] ZHU X F, ZHANG D T, CHEN C J, et al. Harnessing the interplay of Fe-Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis[J]. Nano Energy,2020,71:104597. doi: 10.1016/j.nanoen.2020.104597
    [15] YIN H J, JIANG L X, LIU P R, et al. Remarkably enhanced water splitting activity of nickel foam due to simple immersion in a ferric nitrate solution[J]. Nano Research,2018,11:3959-3971. doi: 10.1007/s12274-017-1886-7
    [16] WANG C, QI L M. Heterostructured inter-doped ruthenium–cobalt oxide hollow nanosheet arrays for highly efficient overall water splitting[J]. Advanced Functional Materials,2020,59(39):17219-17224.
    [17] WU Y Y, LI G D, LIU Y P, et al. Overall water splitting catalyzed efficiently by an ultrathin nanosheet-built, hollow Ni3S2-based electrocatalyst[J]. Advanced Functional Materials,2016,26(27):4839-4847. doi: 10.1002/adfm.201601315
    [18] CHEN X J, LI P P, JIN Z Y, et al. Tri-metallic phytate in situ electrodeposited on 3D Ni foam as a highly efficient electrocatalyst for enhanced overall water splitting[J]. Journal of Materials Chemistry A,2017,5(35):18786-18792. doi: 10.1039/C7TA05386J
    [19] PAN F S, YANG X, ZHANG D F, et al. Chemical nature of phytic acid conversion coating on AZ61 magnesium alloy[J]. Applied Surface Science,2009,255(20):8363-8371. doi: 10.1016/j.apsusc.2009.05.089
    [20] YE C H, ZHENG Y F, WANG S Q, et al. In vitro corrosion and biocompatibility study of phytic acid modified WE43 magnesium alloy[J]. Applied Surface Science,2012,258(8):3420-3427. doi: 10.1016/j.apsusc.2011.11.087
    [21] CHEN J, SONG Y W, SHAN D Y, et al. Modifications of the hydrotalcite film on AZ31 Mg alloy by phytic acid: The effects on morphology, composition and corrosion resistance[J]. Corrosion Science,2013,74:130-138. doi: 10.1016/j.corsci.2013.04.034
    [22] LIU Z L, SHANG S M, CHIU K L, et al. Fabrication of conductive and flame-retardant bifunctional cotton fabric by polymerizing pyrrole and doping phytic acid[J]. Polymer Degradation and Stability,2019,167:277-282. doi: 10.1016/j.polymdegradstab.2019.06.029
    [23] XIONG C H, LI W H, JIN Z Q, et al. Preparation of phytic acid conversion coating and corrosion protection performances for steel in chlorinated simulated concrete pore solution[J]. Corrosion Science,2018,139(15):275-288.
    [24] CAI K, SHEN W, REN B Y, et al. A phytic acid modified CoFe2O4 magnetic adsorbent with controllable morphology, excellent selective adsorption for dyes and ultra-strong adsorption ability for metal ions[J]. Chemical Engineering Journal,2017,330(15):936-946.
    [25] GONG W G, FAN M, LUO J, et al. Effect of nickel phytate on flame retardancy of intumescent flame retardant polylactic acid[J]. Polymers for Advanced Technologies,2021,32(4):1548-1559. doi: 10.1002/pat.5190
    [26] HUANG Y Y, JIAN Y P, LI L H, et al. A NIR-Responsive Phytic Acid Nickel Biomimetic Complex Anchored on Carbon Nitride for Highly Efficient Solar Hydrogen Production[J]. Angewandte Chemie International Edition,2021,60(10):5245-5249. doi: 10.1002/anie.202014317
    [27] ZHANG R F, QIAO L P, QU B, et al. Biocompatibility of micro-arc oxidation coatings developed on Ti6Al4V alloy in a solution containing organic phosphate[J]. Materials Letters,2015,153:77-80. doi: 10.1016/j.matlet.2015.04.031
    [28] LI P P, JIN Z Y, YANG J, et al. Highly active 3D-nanoarray-supported oxygen-evolving electrode generated from cobalt-phytate nanoplates[J]. Chemistry of Materials,2016,28(1):153-161. doi: 10.1021/acs.chemmater.5b03470
    [29] YU L, ZHOU H Q, SUN J Y, et al. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting[J]. Energy & Environmental Science,2017,10(8):1820-1827.
    [30] NIU S, JIANG W J, TANG T, et al. Autogenous growth of hierarchical NiFe(OH)x/FeS nanosheet-on-microsheet arrays for synergistically enhanced high-output water oxidation[J]. Advanced Functional Materials,2019,29(36):1902180-1902188. doi: 10.1002/adfm.201902180
    [31] SINGH T I, RAJESHHHANNA G, PAN U N, et al. Alkaline water splitting enhancement by MOF-derived Fe-Co-Oxide/Co@NC-mNS heterostructure: boosting OER and HER through defect engineering and in situ oxidation[J]. Small,2021,29(17):2101312.
    [32] DAS D, SANTRA S, NANDA K K. In situ fabrication of a nickel/molybdenum carbide-anchored N-doped graphene/CNT hybrid: an efficient (pre)catalyst for OER and HER[J]. ACS Applied Materials & Interfaces,2018,10(41):35025-35038.
    [33] QIU Z, MA Y, EDVINSSON T. In operando Raman investigation of Fe doping influence on catalytic NiO intermediates for enhanced overall water splitting[J]. Nano Energy,2019,66:104118. doi: 10.1016/j.nanoen.2019.104118
    [34] LI C F, ZHAO J W, WU J Q, et al. Fe doping and oxygen vacancy modulated Fe-Ni5P4 /NiFeOH nanosheets as bifunctional electrocatalysts for efficient overall water splitting[J]. Applied Catalysis B:Environmental,2021,291:119987. doi: 10.1016/j.apcatb.2021.119987
    [35] HUANG H, YU C, ZHAO C, et al. Iron-tuned super nickel phosphide microstructures with high activity for electrochemical overall water splitting[J]. Nano Energy,2017,34:472-480. doi: 10.1016/j.nanoen.2017.03.016
    [36] HUANG L, CHEN D, LUO G, et al. Zirconium-regulation-induced bifunctionality in 3D cobalt–Iron oxide nanosheets for overall water splitting[J]. Advanced Materials,2019,31(28):1901439. doi: 10.1002/adma.201901439
    [37] LIU W, DU K, LIU L, et al. One-step electroreductively deposited iron-cobalt composite films as efficient bifunctional electrocatalysts for overall water splitting[J]. Nano Energy,2016,38:576-584.
  • 加载中
计量
  • 文章访问数:  145
  • HTML全文浏览量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-06
  • 录用日期:  2022-03-05
  • 修回日期:  2022-02-20
  • 网络出版日期:  2022-03-25

目录

    /

    返回文章
    返回