留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机改性蒙脱土对聚乳酸-聚丁二酸丁二醇酯合金的增容效应

吕若昀 田瑶 张杰 彭亚 唐逸铭 余鹏

吕若昀, 田瑶, 张杰, 等. 有机改性蒙脱土对聚乳酸-聚丁二酸丁二醇酯合金的增容效应[J]. 复合材料学报, 2022, 39(12): 5973-5983. doi: 10.13801/j.cnki.fhclxb.20211129.002
引用本文: 吕若昀, 田瑶, 张杰, 等. 有机改性蒙脱土对聚乳酸-聚丁二酸丁二醇酯合金的增容效应[J]. 复合材料学报, 2022, 39(12): 5973-5983. doi: 10.13801/j.cnki.fhclxb.20211129.002
LV Ruoyun, TIAN Yao, ZHANG Jie, et al. Compatibilization of poly(lactic acid)-poly(butylene succinate) blends by using organic modified montmorillonite as a compatibilizer[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5973-5983. doi: 10.13801/j.cnki.fhclxb.20211129.002
Citation: LV Ruoyun, TIAN Yao, ZHANG Jie, et al. Compatibilization of poly(lactic acid)-poly(butylene succinate) blends by using organic modified montmorillonite as a compatibilizer[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5973-5983. doi: 10.13801/j.cnki.fhclxb.20211129.002

有机改性蒙脱土对聚乳酸-聚丁二酸丁二醇酯合金的增容效应

doi: 10.13801/j.cnki.fhclxb.20211129.002
基金项目: 大学生创新创业训练计划项目(201910500003)
详细信息
    通讯作者:

    余鹏 ,博士,副教授,硕士生导师,研究方向为生物可降解材料  E-mail: yupeng@mail.hbut.edu.cn

  • 中图分类号: TB332

Compatibilization of poly(lactic acid)-poly(butylene succinate) blends by using organic modified montmorillonite as a compatibilizer

  • 摘要: 为了获得综合性能优良的聚乳酸基生物可降解复合材料,利用二甲基双十八烷基氯化铵有机改性蒙脱土(OMMT)作为非反应型增容剂,通过直接熔融共混法制备了有机改性蒙脱土/聚乳酸-聚丁二酸丁二醇酯(OMMT/PLA-PBS)复合材料,研究了OMMT含量对PLA-PBS共混体系的增容效果及其对力学性能的影响规律。微观结构表明,OMMT能够显著降低分散相PBS的粒径和均匀粒径分布,分布在PLA与PBS相界面处的OMMT,起到了类似嵌段共聚物的增容作用,增加了PLA与PBS之间的黏结力。动态流变结果表明,当OMMT含量为3wt%时,OMMT在PLA-PBS共混物中形成三维网络结构。动态热机械性能结果显示,添加OMMT后,OMMT/PLA-PBS复合材料中PLA相与PBS相对应的玻璃化转变温度相互靠拢,当OMMT含量为1wt%时,PLA与PBS的玻璃化转变温度相互靠拢的幅度最大,增容效果最好。热性能数据表明,加入OMMT后,复合材料中PLA的结晶度出现先增加后降低的变化趋势,在OMMT含量为1wt%时,PLA结晶度达到最大值12.7%。力学性能结果表明,当OMMT含量为1wt%时,OMMT/PLA-PBS复合材料的综合力学性能达到最佳,拉伸强度和冲击强度分别为62.5 MPa和12.6 kJ/m2,较PLA-PBS共混物分别提高了32.1%和80%。

     

  • 图  1  不同OMMT含量的OMMT/PLA-PBS复合材料在不同放大倍率下的SEM图像和对应的PBS分散相粒径分布图

    Figure  1.  SEM images at different magnifications of OMMT/PLA-PBS composites with different OMMT contents and corresponding particle size distribution of PBS dispersed phase

    图  2  不同OMMT含量的OMMT/PLA-PBS复合材料TEM图像

    Figure  2.  TEM images of OMMT/PLA-PBS composites with different OMMT contents

    图  3  分散在界面处的OMMT增容PLA与PBS的示意图

    Figure  3.  Schematic illustration of compatibilization effect of OMMT located at interface between PLA and PBS

    图  4  OMMT及不同OMMT含量的OMMT/PLA-PBS复合材料的XRD图谱

    Figure  4.  XRD patterns of OMMT and OMMT/PLA-PBS composites with different OMMT contents

    d001—Interlamellar spacing

    图  5  OMMT/PLA-PBS复合材料的动态流变性能曲线

    Figure  5.  Dynamic rheological property curves of OMMT/PLA-PBS composites

    图  6  OMMT/PLA-PBS复合材料的动态热机械性能曲线

    Figure  6.  Dynamic thermo-mechanical property curves of OMMT/PLA-PBS composites

    图  7  OMMT/PLA-PBS复合材料的DSC热流曲线

    Figure  7.  DSC heat flow curves of OMMT/PLA-PBS composites

    图  8  OMMT/PLA-PBS复合材料的拉伸性能

    Figure  8.  Tensile properties of OMMT/PLA-PBS composites

    图  9  OMMT/PLA-PBS复合材料的冲击强度

    Figure  9.  Impact strength of OMMT/PLA-PBS composites

    表  1  有机改性蒙脱土/聚乳酸-聚丁二酸丁二醇酯(OMMT/PLA-PBS)复合材料组成配比

    Table  1.   Formulation of organic modified montmorillonite/poly(lactic acid)-poly(butylene succinate) (OMMT/PLA-PBS) composites wt%

    SamplesMass fraction of PLAMass fraction of PBSMass fraction of OMMT
    PLA-PBS80200
    0.5wt%OMMT/PLA-PBS80200.5
    1wt%OMMT/PLA-PBS80201
    2wt%OMMT/PLA-PBS80202
    3wt%OMMT/PLA-PBS80203
    下载: 导出CSV

    表  2  从损耗模量和力学损耗角正切得到PLA、PBS和OMMT/PLA-PBS复合材料的玻璃化转变温度

    Table  2.   Glass transition temperature of PLA, PBS and OMMT/PLA-PBS composites obtained from loss modulus and loss tangent

    SampleLoss modulus G''Loss tangent tanδ
    Tg, PBS/℃Tg, PLA/℃Tg, PBS/℃Tg, PLA/℃
    PLA61.067.3
    PLA-PBS−22.560.5−17.666.9
    0.5wt%OMMT/PLA-PBS−21.760.4−17.566.5
    1wt%OMMT/PLA-PBS−18.458.5−16.164.4
    2wt%OMMT/PLA-PBS−18.459.6−16.365.8
    3wt%OMMT/PLA-PBS−19.460.1−17.865.7
    PBS−22.4−17.8
    Notes: Tg, PBS—Glass transition temperature of PBS phase; Tg, PLA—Glass transition temperature of PLA phase.
    下载: 导出CSV

    表  3  从DSC热流曲线得到的OMMT/PLA-PBS复合材料的热性能参数

    Table  3.   Thermal data obtained from the DSC heat flow curves of OMMT/PLA-PBS composites

    SampleTg, PLA/°CTcc, PLA/°CTm, PBS/°CTm, PLA/°CXc ,PLA/%
    PLA-PBS59.3117.7111.9151.21.2
    0.5wt%OMMT/PLA-PBS60.1117.0114.3149.9/155.47.1
    1wt%OMMT/PLA-PBS62.8116.7114.1149.5/154.912.7
    2wt%OMMT/PLA-PBS59.8117.1114.1149.7/154.98.8
    3wt%OMMT/PLA-PBS59.3116.5114.2149.5/155.67.0
    Notes: Tg—Glass transition temperature; Tcc—Cold crystallization temperature; Tm—Melting temperature; Xc—Degree of crystallinity.
    下载: 导出CSV
  • [1] CASTRO-AGUIRRE E, INIGUEZ-FRANCO F, SAMSUDIN H, et al. Poly(lactic acid)-mass production, processing, industrial applications, and end of life[J]. Advanced Drug Delivery Reviews,2016,107:333-366. doi: 10.1016/j.addr.2016.03.010
    [2] HAMAD K, KASEEM M, AYYOOB M, et al. Polylactic acid blends: The future of green, light and tough[J]. Progress in Polymer Science,2018,85:83-127. doi: 10.1016/j.progpolymsci.2018.07.001
    [3] CHAI J L, WANG G L, LI B, et al. Strong and ductile poly (lactic acid) achieved by carbon dioxide treatment at room temperature[J]. Journal of CO2 Utilization,2019,33:292-302. doi: 10.1016/j.jcou.2019.06.006
    [4] 夏明凤, 杨月, 付国良, 等. 高性能超韧聚乳酸共混物的研究进展[J]. 高分子材料科学与工程, 2018, 34(10):178-183.

    XIA Mingfeng, YANG Yue, FU Guoliang, et al. Progress of high-performance super-tough poly(lactic acid) blends[J]. Polymer Materials Science and Engineering,2018,34(10):178-183(in Chinese).
    [5] NOFAR M, SACLIGIL D, CARREAU P J, et al. Poly (lactic acid) blends: Processing, properties and applications[J]. International Journal of Biological Macromolecules,2019,125:307-360. doi: 10.1016/j.ijbiomac.2018.12.002
    [6] GIGLI M, FABBRI M, LOTTI N, et al. Poly(butylene succinate)-based polyesters for biomedical applications: A review[J]. European Polymer Journal,2016,75:431-460. doi: 10.1016/j.eurpolymj.2016.01.016
    [7] ZHANG X C, LIU Q, SHI J F, et al. Distinctive tensile properties of the blends of poly(L-lactic acid) (PLLA) and poly(butylene succinate) (PBS)[J]. Journal of Polymers and The Environment,2018,26(4):1737-1744. doi: 10.1007/s10924-017-1064-8
    [8] OSTROWSKA J, SADURSKI W, PALUCH M, et al. The effect of poly(butylene succinate) content on the structure and thermal and mechanical properties of its blends with polylactide[J]. Polymer International,2019,68(7):1271-1279. doi: 10.1002/pi.5814
    [9] SU S, KOPITZKY R, TOLGA S, et al. Polylactide (PLA) and its blends with poly(butylene succinate) (PBS): A brief review[J]. Polymers, 2019, 11(7): 1193.
    [10] DI LORENZO M L. Poly(l-lactic acid)/poly(butylene succinate) biobased biodegradable blends[J]. Polymer Reviews,2021,61(3):457-492. doi: 10.1080/15583724.2020.1850475
    [11] ZHANG B, SUN B, BIAN X C, et al. High melt strength and high toughness PLLA/PBS blends by copolymerization and in situ reactive compatibilization[J]. Industrial & Engineering Chemistry Research,2017,56(1):52-62.
    [12] XUE B, HE H Z, HUANG Z X, et al. Fabrication of super-tough ternary blends by melt compounding of poly(lactic acid) with poly(butylene succinate) and ethylene-methyl acrylate-glycidyl methacrylate[J]. Composites Part B: Engineering,2019,172:743-749. doi: 10.1016/j.compositesb.2019.05.098
    [13] ZHANG W, XU Y, WANG P L, et al. Copolymer P(BS-co-LA) enhanced compatibility of PBS/PLA composite[J]. Journal of Polymers and The Environment,2018,26(7):3060-3068. doi: 10.1007/s10924-018-1180-0
    [14] DING Y, FENG W T, HUANG D, et al. Compatibilization of immiscible PLA-based biodegradable polymer blends using amphiphilic di-block copolymers[J]. European Polymer Journal,2019,118:45-52. doi: 10.1016/j.eurpolymj.2019.05.036
    [15] HUITRIC J, VILLE J, MEDERIC P, et al. Solid-state morphology, structure, and tensile properties of polyethylene/polyamide/nanoclay blends: Effect of clay fraction[J]. Polymer Testing,2017,58:96-103. doi: 10.1016/j.polymertesting.2016.12.020
    [16] AMMAR A, ELZATAHRY A, Al-MAADEED M, et al. Nanoclay compatibilization of phase separated polysulfone/polyimide films for oxygen barrier[J]. Applied Clay Science,2017,137:123-134. doi: 10.1016/j.clay.2016.12.012
    [17] GUO J B, XU Y, HE W D, et al. Phase morphology evolution and compatibilization of immiscible polyamide 6/polystyrene blends using nano-montmorillonite[J]. Polymer Engineering & Science,2018,58(5):752-758.
    [18] DING W J, ZHOU Y F, WANG W Q, et al. The reactive compatibilization of montmorillonite for immiscible anionic polyamide 6/polystyrene blends via in situ polymerization[J]. Polymer-Plastics Technology and Materials,2020,59(8):884-894. doi: 10.1080/25740881.2019.1708101
    [19] GENOYER J, YEE M, SOULESTIN J, et al. Compatibilization mechanism induced by organoclay in PMMA/PS blends[J]. Journal of Rheology,2017,61(4):613-626. doi: 10.1122/1.4982701
    [20] 柯贤忠, 刘治田, 胡芹, 等. 有机改性蒙脱土的制备及其对聚乙烯-聚苯乙烯相态和力学性能的影响[J]. 复合材料学报, 2019, 36(7):1650-1657.

    KE Xianzhong, LIU Zhitian, HU Qin, et al. Preparation of organic modified montmorillonite and its effect on phase morphology and mechanical properties of polyethylene-polystyrene[J]. Acta Materiae Compositae Sinica,2019,36(7):1650-1657(in Chinese).
    [21] BHATIA A, GUPTA R K, BHATTACHARYA S N, et al. Effect of clay on thermal, mechanical and gas barrier properties of biodegradable poly(lactic acid)/poly(butylene succinate) (PLA/PBS) nanocomposites[J]. International Polymer Processing,2010,25(1):5-14. doi: 10.3139/217.2214
    [22] YANG Y C, LI X Y, ZHANG Q Q, et al. Foaming of poly(lactic acid) with supercritical CO2: The combined effect of crystallinity and crystalline morphology on cellular structure[J]. The Journal of Supercritical Fluids,2019,145:122-132. doi: 10.1016/j.supflu.2018.12.006
    [23] 中国国家标准化管理委员会. 塑料 拉伸性能的测定: GB/T 1040.2—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People’s Republic of China. Plastics: Determination of tensile properties: GB/T 1040.2—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [24] 中国国家标准化管理委员会. 塑料 简支梁冲击性能的测定: GB/T 1043.1—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Plastics: Determination of charpy impact properties: GB/T 1043.1—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [25] DENG Y, THOMAS N L. Blending poly(butylene succinate) with poly(lactic acid): Ductility and phase inversion effects[J]. European Polymer Journal,2015,71:534-546. doi: 10.1016/j.eurpolymj.2015.08.029
    [26] NOFAR M, HEUZEY M C, CARREAU P J, et al. Effects of nanoclay and its localization on the morphology stabilization of PLA/PBAT blends under shear flow[J]. Polymer,2016,98:353-364. doi: 10.1016/j.polymer.2016.06.044
    [27] VILLE J, MEDERIC P, HUITRIC J, et al. Structural and rheological investigation of interphasein polyethylene/polyamide/nanoclay ternary blends[J]. Polymer,2012,53(8):1733-1740.
    [28] SALEHIYAN R, HYUN K. Effect of organoclay on non-linear rheological properties of poly(lactic acid)/poly(caprolactone) blends[J]. Korean Journal of Chemical Engineering,2013,30(5):1013-1022. doi: 10.1007/s11814-013-0035-6
    [29] OJIJO V, RAY S S, SADIKU R. Effect of nanoclay loading on the thermal and mechanical properties of biodegradable polylactide/poly (butylene succinate)-co-adipate blend composites[J]. ACS Applied Materials & Interfaces,2012,4(5):2395-2405.
    [30] OJIJO V, MALWELA T, RAY S S, et al. Unique isothermal crystallization phenomenon in the ternary blends of biopolymers polylactide and poly (butylene succinate)-co-adipate and nano-clay[J]. Polymer,2012,53(2):505-518. doi: 10.1016/j.polymer.2011.12.007
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1060
  • HTML全文浏览量:  534
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-22
  • 修回日期:  2021-11-14
  • 录用日期:  2021-11-19
  • 网络出版日期:  2021-11-30
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回