留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多壁碳纳米管-细菌纤维素复合薄膜的制备及其力学性能

田萃钰 陆赵情 宁逗逗 赵瑞霞 耿博

田萃钰, 陆赵情, 宁逗逗, 等. 多壁碳纳米管-细菌纤维素复合薄膜的制备及其力学性能[J]. 复合材料学报, 2022, 40(0): 1-9
引用本文: 田萃钰, 陆赵情, 宁逗逗, 等. 多壁碳纳米管-细菌纤维素复合薄膜的制备及其力学性能[J]. 复合材料学报, 2022, 40(0): 1-9
Cuiyu TIAN, Zhaoqing LU, Doudou NING, Ruixia ZHAO, Bo GENG. Preparation and mechanical properties of multi-walled carbon nanotubes-bacterial cellulose composite films[J]. Acta Materiae Compositae Sinica.
Citation: Cuiyu TIAN, Zhaoqing LU, Doudou NING, Ruixia ZHAO, Bo GENG. Preparation and mechanical properties of multi-walled carbon nanotubes-bacterial cellulose composite films[J]. Acta Materiae Compositae Sinica.

多壁碳纳米管-细菌纤维素复合薄膜的制备及其力学性能

基金项目: 国家自然科学基金项目(22178211);陕西省重点研发计划项目(2021 ZDLGY14-05); 陕西省教育厅重点项目(20 JY002)
详细信息
    通讯作者:

    陆赵情,博士,教授,博士生导师,高性能纤维和纸基功能材料 E-mail:luzhaoqing302@163.com

  • 中图分类号: TB324

Preparation and mechanical properties of multi-walled carbon nanotubes-bacterial cellulose composite films

  • 摘要: 开发和利用绿色生物质材料能够降低石油基聚合物的消耗,但与单根细菌纤维素(BC)相比,BC薄膜表现出较低的力学性能,限制了其的应用领域。为协同提高BC复合薄膜的强度和韧性,本研究以细菌纤维素(BC)为基体,通过对其碱处理、TEMPO氧化处理得到TEMPO氧化的BC(TOBC),并引入羧基化多壁碳纳米管(CNT)作为增强体,采用真空抽滤技术制备出CNT-TOBC复合薄膜,着重探究了CNT的添加对TOBC薄膜力学性能和微观形貌的影响,并探讨其增强增韧机制。研究结果表明:当CNT的添加量为7.5wt.%时,CNT-TOBC复合薄膜的力学性能最佳,其断裂应力、伸长率以及韧性分别为174 MPa、10.83%和12.01 MJ·m−3,相比纯的TOBC薄膜分别提高了56.76%、144.47%和295.07%,这主要归因于CNT与TOBC间的氢键相互作用、CNT内在高的强度以及外在增韧机制。本研究为提高复合材料的界面结合和力学性能提供了一种切实可行的方法,并进一步拓宽了TOBC在柔性电子衬底、智能包装等领域的应用。

     

  • 图  1  羧基化多壁碳纳米管-TEMPO氧化的细菌纤维素(CNT-TOBC)复合薄膜的制备流程图

    Figure  1.  Schematic diagram of carboxylic multi-walled carbon nanotubes-TEMPO-oxidized bacterial cellulose (CNT-TOCN) composite films preparation process

    图  2  TOBC水分散液和CNT水分散液的光学照片、SEM图和直径分布图

    Figure  2.  Optical photograph, SEM image, and diameter distribution of TOBC/water dispersion and CNT/water dispersion

    图  3  不同CNT添加量的CNT-TOBC复合薄膜的光学照片

    Figure  3.  Optical photograph of CNT-TOBC composite films with different CNT content

    图  4  不同CNT添加量的CNT-TOBC复合薄膜的FTIR谱图

    Figure  4.  FTIR spectra of CNT-TOBC composite films with different CNT content

    图  5  纯的TOBC薄膜(a)和CNT-TOBC-7.5 wt.%复合薄膜(b)的高分辨率C1 s XPS谱图

    Figure  5.  High resolution C1 s XPS spectra of pure TOBC film (a) and CNT-TOBC-7.5 wt.% composite film (b)

    图  6  (a)CNT薄膜和(b)不同CNT添加量的CNT-TOBC复合薄膜的XRD谱图

    Figure  6.  XRD pattern of CNT film (a) and CNT-TOBC composite films (b) with different CNT content

    图  7  不同CNT添加量的CNT-TOBC复合薄膜的应力-应变曲线(a),断裂应力(b),断裂伸长率(c)和断裂韧性(d)

    Figure  7.  Stress-strain curves (a), tensile stress (b), tensile strain (c), and toughness (d) of CNT-TOBC composite films with different CNT content

    图  8  不同CNT添加量的CNT-TOBC复合薄膜断裂截面的SEM图

    Figure  8.  Cross-sectional SEM images of pure TOBC film and CNT-TOBC composite film with different CNT content

    表  1  不同CNT添加量的CNT-TOBC复合薄膜的配方(wt.%)

    Table  1.   The formulations of CNT-TOBC composite films with different CNT content (wt.%)

    SampleTOCNCNT
    TOBC1000
    CNT-TOBC-2.5 wt.%97.52.5
    CNT-TOBC-5 wt.%955
    CNT-TOBC-7.5 wt.%92.57.5
    CNT-TOBC-10 wt.%9010
    下载: 导出CSV

    表  2  不同CNT添加量的CNT-TOBC复合薄膜的厚度和紧度

    Table  2.   Thickness and tightness of CNT-TOBC composite films with different CNT contents

    SampleThickness/μmTightness/g·cm−3
    TOBC281.43
    CNT-TOBC-2.5 wt.%301.33
    CNT-TOBC-5 wt.%311.29
    CNT-TOBC-7.5 wt.%321.25
    CNT-TOBC-10 wt.%341.18
    下载: 导出CSV

    表  3  TOBC薄膜和(b)CNT-TOBC-7.5 wt.%复合薄膜XPS分峰对应的结合能 (eV)

    Table  3.   XPS peak binding energy assignments of TOBC film and (b) CNT-TOBC-7.5 wt.% composite film (eV)

    Functional groupBinding energy
    TOBCC—C284.6
    C—OH286.4
    C—O—C287.8
    O—C═O288.8
    CNT-TOBC-7.5 wt.%C—C284.6
    C═C285.1
    C—OH286.6
    C—O—C288.0
    O—C═O289.2
    下载: 导出CSV

    表  4  不同CNT添加量下的TOBC基体的结晶指数 (%)

    Table  4.   The crystalline indexes of TOBC matrix with different CNT content (%)

    SampleCrystalline index
    TOBC90.42
    CNT-TOBC-2.5 wt.%89.74
    CNT-TOBC-5 wt.%91.71
    CNT-TOBC-7.5 wt.%93.35
    CNT-TOBC-10 wt.%94.02
    下载: 导出CSV
  • [1] ZHANG C L, CHA R T, ZHANG P, et al. Cellulosic substrate materials with multi-scale building blocks: Fabrications, properties and applications in bioelectronic devices[J]. Chemical Engineering Journal,2022,430(2):132562.
    [2] OPERAMOLLA A, MAZZUCA C, CAPODIECI L, et al. Toward a reversible consolidation of paper materials using cellulose nanocrystals[J]. ACS Applied Materials & Interfaces,2021,13(37):44972-44982.
    [3] Ma Q, WANG K, MOHAWK D, et al. Strong, ductile, transparent, water-resistant cellulose nanofibril composite films via uv-induced inter-cross-linked networks[J]. ACS Sustainable Chemistry & Engineering,2021,9(32):10749-10760.
    [4] CHEN C T, QIAN J S, CHEN H W, et al. Molecular origin of the biologically accelerated mineralization of hydroxyapatite on bacterial cellulose for more robust nanocomposites[J]. Nano Letters,2021,21(24):10292-10300. doi: 10.1021/acs.nanolett.1c03411
    [5] 贺玮, 刘晓彤, 郑裕东, 等. 用于空气过滤的改性大豆蛋白-细菌纤维素复合材料的制备及性能[J]. 复合材料学报, 2021, 38(3):843-853.

    HE Wei, LIU Xiaotong, ZHENG Yudong, et al. Preparation and properties of modified soy protein-bacterial cellulose composites for air filtration[J]. Acta Materiae Compositae Sinica,2021,38(3):843-853(in Chinese).
    [6] CHEN K, SHI B, YUE Y H, et al. Binary synergy strengthening and toughening of bio-inspired nacre-like graphene oxide-sodium alginate composite paper[J]. ACS Nano,2015,9(8):8165-8175. doi: 10.1021/acsnano.5b02333
    [7] HUANG H D, LIU C Y, ZHANG L Q, et al. Simultaneous reinforcement and toughening of carbon nanotube /cellulose conductive nanocomposite films by interfacial hydrogen bonding[J]. ACS Sustainable Chemistry & Engineering,2015,3(2):317-324.
    [8] 陈科, 岳永海, 郭林. 二元协同增强、增韧仿珍珠母层状氧化石墨烯/海藻酸钠(GO/SA)复合薄膜材料的构建[J]. 中国科技论文, 2016, 11(10):1151-1155. doi: 10.3969/j.issn.2095-2783.2016.10.016

    CHEN Ke, YUE Yonghai, GUO Lin, et al. Construction of binary synergy strengthening and toughening bio-inspired nacre-like graphene oxide/sodium alginate composite paper[J]. China Science paper,2016,11(10):1151-1155(in Chinese). doi: 10.3969/j.issn.2095-2783.2016.10.016
    [9] LIANG B L, Zhao H W, ZHANG Q, et al. Ca2+ enhanced nacre-inspired montmorillonite-alginate film with superior mechanical, transparent, fire retardancy, and shape memory properties[J]. ACS Applied Mater Interfaces,2016,8(42):28816-28823. doi: 10.1021/acsami.6b08203
    [10] GONG S S, CHENG Q F. Bioinspired graphene-based nanocomposites via ionic interfacial interactions[J]. Composites Communications,2018,7:16-22. doi: 10.1016/j.coco.2017.12.002
    [11] An Z, COMPTON O C, PUTZ K W, et al. Bio-inspired borate cross-linking in ultra-stiff graphene oxide thin films[J]. Advanced Materials,2011,23(33):3842-3846.
    [12] DUAN J L, GONG S S, Gao Y, et al. Bioinspired ternary artificial nacre nanocomposites based on reduced graphene oxide and nanofibrillar cellulose [J] ACS Applied Materials & Interfaces, 2016, 8(16): 10545-10550.
    [13] WANG Y, MENG F B, HUANG F, et al. Ultrastrong carbon nanotubes/graphene papers via multiple pi-pi cross-linking[J]. ACS Applied Materials Interfaces,2020,12(42):47811-47819. doi: 10.1021/acsami.0c12501
    [14] HACOPIAN E F, YANG Y C, Ni B, et al. Toughening graphene by integrating carbon nanotubes[J]. ACS Nano,2018,12(8):7901-7910. doi: 10.1021/acsnano.8b02311
    [15] E S F, NING D D, WANG Y F, et al. Ternary synergistic strengthening and toughening of bio-inspired TEMPO-oxidized cellulose nanofibers/borax/polyvinyl alcohol composite film with high transparency[J]. ACS Sustainable Chemistry & Engineering,2020,8(41):15661-15669.
    [16] WANG J F, CHENG Q F, LIN L, et al. Synergistic toughening of bioinspired poly(vinyl alcohol)-clay-nanofibrillar cellulose artificial nacre[J]. ACS Nano,2014,8(3):2739-2745. doi: 10.1021/nn406428n
    [17] ZHANG L, ZHANG G, LIU C H, et al. High-density carbon nanotube buckypapers with superior transport and mechanical properties[J]. Nano Letters,2012,12(9):4848-4852. doi: 10.1021/nl3023274
    [18] HAN Y, ZHANG X H, YU X P, et al. Bio-inspired aggregation control of carbon nanotubes for ultra-strong composites[J]. Scientific Reports,2015,5:11533. doi: 10.1038/srep11533
    [19] LIU K, SUN Y H, LIN X Y, et al. Scratch-resistant, highly conductive, and high-strength carbon nanotubebased composite yarns[J]. ACS Nano,2010,4(10):5827-5834. doi: 10.1021/nn1017318
    [20] ZHU J Q, CAO W X, YUE M L, et al. Strong and stiff aramid nanofiber/carbon nanotube nanocomposites[J]. ACS Nano,2015,9(3):2489-2501. doi: 10.1021/nn504927e
    [21] YAO J J, CHEN S Y, CHEN Y, et al. Macrofibers with high mechanical performance based on aligned bacterial cellulose nanofibers[J]. ACS Applied Materials & Interfaces,2017,9(24):20330-20339.
    [22] YANG B, ZHANG M Y, Lu Z Q, et al. Comparative study of aramid nanofiber (ANF) and cellulose nanofiber (CNF)[J]. Carbohydr Polym,2019,208:372-381. doi: 10.1016/j.carbpol.2018.12.086
    [23] SEGAL L, CREELY J J, MARTIN A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal,1959,29(10):786-794. doi: 10.1177/004051755902901003
    [24] 周可可, 唐亚丽, 卢立新, 等. 氧化纳米纤维素增强再生纤维素全纤维素复合薄膜的制备及性能[J]. 复合材料学报, 2020, 37(7):1657-1666.

    ZHOU Keke, TANG Yali, LU Lixin, et al. Preparation and properties of all-cellulose composite films with oxidized cellulose nanofibrils reinforcing regenerated cellulose[J]. Acta Materiae Compositae Sinica,2020,37(7):1657-1666(in Chinese).
    [25] Zhang Q, Wan S J, Jiang L, et al. Bioinspired robust nanocomposites of cooper ions and hydroxypropyl cellulose synergistic toughening graphene oxide[J]. Science China Technological Sciences,2017,60(5):758-764. doi: 10.1007/s11431-016-0529-3
    [26] LIN F C, WANG Z, CHEN J S, et al. A bioinspired hydrogen bond crosslink strategy toward toughening ultrastrong and multifunctional nanocomposite hydrogels[J]. Journal of Materials Chemistry B,2020,8(18):4002-4015. doi: 10.1039/D0TB00424C
    [27] LI C H, GUO J W, JIANG T, et al. Extensional flow-induced hybrid crystalline fibrils (shish) in CNT/PLA nanocomposite[J]. Carbon,2018,129:720-729. doi: 10.1016/j.carbon.2017.12.063
  • 加载中
计量
  • 文章访问数:  100
  • HTML全文浏览量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-29
  • 录用日期:  2022-05-07
  • 修回日期:  2022-04-26
  • 网络出版日期:  2022-05-20

目录

    /

    返回文章
    返回