留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维增强树脂基复合材料及其拉索抗低速冲击性能综述

王安妮 刘晓刚 岳清瑞

王安妮, 刘晓刚, 岳清瑞. 碳纤维增强树脂基复合材料及其拉索抗低速冲击性能综述[J]. 复合材料学报, 2022, 39(11): 5049-5061. doi: 10.13801/j.cnki.fhclxb.20220615.001
引用本文: 王安妮, 刘晓刚, 岳清瑞. 碳纤维增强树脂基复合材料及其拉索抗低速冲击性能综述[J]. 复合材料学报, 2022, 39(11): 5049-5061. doi: 10.13801/j.cnki.fhclxb.20220615.001
WANG Anni, LIU Xiaogang, YUE Qingrui. Low-velocity impact resistance of carbon fiber reinforced polymer composite and its cables: A review[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5049-5061. doi: 10.13801/j.cnki.fhclxb.20220615.001
Citation: WANG Anni, LIU Xiaogang, YUE Qingrui. Low-velocity impact resistance of carbon fiber reinforced polymer composite and its cables: A review[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5049-5061. doi: 10.13801/j.cnki.fhclxb.20220615.001

碳纤维增强树脂基复合材料及其拉索抗低速冲击性能综述

doi: 10.13801/j.cnki.fhclxb.20220615.001
基金项目: 国家重点研发计划(2021 YFB3704403);国家自然科学基金(52192663)
详细信息
    通讯作者:

    刘晓刚,工学博士,教授,博士生导师,研究方向为钢结构与组合结构研究 E-mail: liuxiaogang@ustb.edu.cn

    岳清瑞,工学硕士,教授,中国工程院院士,博士生导师,研究方向为土木工程纤维增强复合材料结构 E-mail:yueqr@vip.163.com

  • 中图分类号: U444;TB332

Low-velocity impact resistance of carbon fiber reinforced polymer composite and its cables: A review

Funds: National Key Research and Development Program of China (2021 YFB3704403); National Natural Science Foundation of China (52192663)
  • 摘要: 碳纤维增强树脂基复合材料(Carbon fiber reinforced polymer composite,CFRP)拉索具有轻质高强特性和优异的耐腐蚀疲劳性能,可替代钢拉索应用于桥梁结构中以应对桥梁更大跨度、更恶劣服役环境的需求。然而,CFRP拉索较差的抗低速冲击性能导致其在服役期间面临车辆、落石等撞击的威胁。为全面了解CFRP的抗冲击性能,促进CFRP拉索在工程结构中的应用,本文对CFRP及其拉索的基础动态力学性能、冲击响应及损伤失效研究现状进行了总结。现有研究表明:CFRP具有应变率敏感性,但CFRP的应变率效应尚不明确,需建立包含全应变率范围的力学性能数据库;CFRP层合板抗冲击性能研究较为全面,然而截面形式差异、较大的长细比、轴向应力耦合等因素导致CFRP层合板的研究结论不能完全适用于CFRP拉索;现有研究停留在冲击能量、锚固长度及温度对小吨位CFRP拉索抗冲击性能的影响,缺乏对大吨位CFRP拉索抗冲击性能及损伤失效机制的研究;CFRP拉索在车辆撞击下破断时的峰值索力远低于其轴向拉伸破断力,应对拉索进行严格的防撞设计。

     

  • 图  1  拉索及吊杆遭受车辆撞击[7]

    Figure  1.  Cable hit by vehicle[7]

    图  2  土木工程用各类纤维增强树脂基复合材料及钢材性能对比[8-9]

    Figure  2.  Comparison from properties of various fibers reinforced polymer composites and steel for civil engineering[8-9]

    图  3  应变率范围定义

    Figure  3.  Definition of the strain rate range

    图  4  不同能量下未穿透的碳纤维增强树脂基复合材料(CFRP)力-位移曲线[36]

    Figure  4.  Force-displacement curves of unpenetrated carbon fiber reinforced polymer composites (CFRP) under different energies[36]

    图  5  穿透CFRP的力-位移曲线: (a) 厚板中穿透;(b) 薄板开始穿孔;(c) 薄板完全穿孔[36]

    Figure  5.  Force-displacement curves of penetrated CFRP: (a) Penetration in a thick CFRP plate; (b) Initiation of perforation in a thin CFRP plate; (c) Complete perforation in a thin CFRP plate[36]

    图  6  冲击荷载作用下纤维增强树脂基复合材料吸收能量-时间曲线: (a) 试样未穿孔;(b) 试样穿孔[36]

    Figure  6.  Energy absorption-time curves of fiber reinforced polymer composites under impact load: (a) Unpenetrated specimens; (b) Penetrated specimens[36]

    Cases 13 and 17—Specimens undergoing partial perforation and complete perforation, respectively

    图  7  纤维增强树脂基复合材料的I型层间断裂韧性与基体韧性的关系[42]

    Figure  7.  Mode I interlaminar fracture toughness of fiber reinforced polymer composites and matrix toughness[42]

    图  8  不同冲击能量下CFRP的荷载-时间曲线[51]

    Figure  8.  Load-time curves of CFRP under various impact energy[51]

    Li—Point in the load-time curve where the first noticeable load drop;Lm—Point corresponding to maximum load

    图  9  冲击荷载作用下CFRP内部损伤:(a) 低冲击能量;(b) 中冲击能量;(c) 高冲击能量[56]

    Figure  9.  Schematic drawing of internal damages of CFRP under impact: (a) Low energy; (b) Medium energy; (c) High energy[56]

    图  10  CFRP绞线的冲击力-时间曲线:(a) 不同冲击能量;(b) 不同预张力;(c) 不同锚固长度[62]

    Figure  10.  Impact force-time curves of CFRP strands: (a) Different impact energies; (b) Different pretensions; (c) Different bond lengths[62]

    图  11  不同温度下CFRP绞线的冲击响应[9]

    Figure  11.  Impact force histories of CFRP wires for the specimens at different temperatures[9]

    表  1  纤维增强树脂基复合材料宏观唯象动态本构模型

    Table  1.   Macroscopic phenomenological dynamic constitutive model of fiber reinforced polymer composites

    NumberDynamic constitutive modelInstructionsReference
    1$\sigma = {\sigma _{\rm{s}}} + {\sigma _{\rm{d}}}$
    ${\sigma _{\rm{d}}} = {q_0}\varepsilon + {q_{\rm{l}}}{\varepsilon ^n}{(\mathop \varepsilon \limits^. )^p}$
    σ—Stress; ${\sigma _{\rm{s}}}$—Static stress; ${\sigma _{\rm{d}}}$—Dynamic stress; q0—Stiffness modulus; n, p and ql are chosen to adequately describe the shape of the experimentally obtained stress-strain curves.Tay et al[28],
    Shokrieh et al[29]
    2$\sigma = E\varepsilon (1 - D){({ { {\mathop \varepsilon \limits^. } \mathord{\left/ {\vphantom { {\mathop \varepsilon \limits^. } {\mathop \varepsilon \limits^. } } } \right. } {\dot\varepsilon_0 } } })^m}$
    $D = 1 - \exp \left[ { - \dfrac{1}{ {n{\rm{e}}} }{\left( {\dfrac{ {E\varepsilon } }{Y} } \right)^n} } \right]$
    D—Damage variable; m—Strain rate coefficient; E—Modulus; n—Shape parameter; Y—Yield strength.Xu et al[30]
    3$\sigma = (A + B{\varepsilon ^n})(1 + C\ln { \dot \varepsilon ^*})(1 - {T^{*m} })$
    $\mathop \varepsilon \limits^. = \dfrac{ {\dot \varepsilon ^{*} } }{ {\mathop { {\varepsilon _0} }\limits^. } },{T^*} = \dfrac{ {T - {T_{\rm{r}}} } }{ { {T_{\rm {melt}} } - {T_{\rm{r}}} } }$
    m—Temperature softening index; Tmelt—Melting temperature of the material; Tr—Reference temperature; A, B, C, n—Constants; T—Test temperature.Han et al[31]
    4$\sigma _i^{{\rm{st}}} = {\sigma _i} {\rm{DIF}}$
    ${\rm{DIF}} = \left\{ { \bigg[\tanh ((\lg ({ {\mathop \varepsilon \limits^. } \mathord{\left/ {\vphantom { {\mathop \varepsilon \limits^. } {\mathop { {\varepsilon _0} }\limits^. } } } \right. } {\mathop { {\varepsilon _0} }\limits^. } }) - A) B)\bigg] \left[ {\dfrac{C}{ {(C + 1)/2} } - 1} \right] + 1} \right\} \dfrac{ {C + 1} }{2}$
    Considering the dynamic enhancement effect. The dynamic enhancement factor is directly introduced.Zhang[27]
    5${\sigma _{\rm{d} } } = {\sigma _{\rm{s} } }({\varphi _\sigma }{\lg _{} }\mathop \varepsilon \limits^. + {\beta _\sigma })$Al-Zubaidy et al[20]
    6${\eta _{ {\rm{DIF} } } } = \left\{ {\begin{array}{*{20}{c} } {1 + A\lg ({ {\mathop \varepsilon \limits^. } \mathord{\left/ {\vphantom { {\mathop \varepsilon \limits^. } {\mathop { {\varepsilon _0})}\limits^. } } } \right. } {\mathop { {\varepsilon _0})}\limits^. } } } \\ 1 \end{array} } \right.$Fang[32]
    7$\sigma = {E_{\rm{l}}}\varepsilon + \alpha {\varepsilon ^2} + \beta {\varepsilon ^3} + E\theta \mathop \varepsilon \limits^. \left[ {1 - \exp \left( { - \dfrac{\varepsilon }{ {\theta \mathop \varepsilon \limits^. } }} \right)} \right]$
    Viscoelastic constitutive model (consisting of nonlinear spring elements connected in parallel with Maxwell originals). El, α, β—Elastic parameters for the spring; θ, E—Elastic parameter and relaxation time for the Maxwell element.
    Zhao et al[33]
    8$\sigma (t) = {E_0}\varepsilon (t) + \mathop \varepsilon \limits^. \displaystyle \sum\limits_{k = 1}^N { {\eta _k} } \left[ {1 - \exp \left( { - \dfrac{ {\varepsilon (t)} }{ {\mathop {\varepsilon {\dot\tau^* _k}} } } } \right)} \right]$A linear elastic element in parallel with multiple Maxwell bodies; ηk—Viscous coefficients.Karim et al[34]
    9$\sigma (\varepsilon ) = {E_{\rm{e}}} + {E_1}{\theta _1}\mathop { {\varepsilon _0} }\limits^. \left( {1 - {{\rm{e}}^{ - \tfrac{\varepsilon }{ {\mathop { {\dot\varepsilon _0}{\theta _1} } } } } }} \right) + {E_2}{\theta _2}\mathop { {\varepsilon _0} }\limits^. \left( {1 - {{\rm{e}}^{ - \tfrac{\varepsilon }{ {\mathop { {\dot\varepsilon _0}{\theta _2} } } } } }} \right)$Bridging model of fiber and matrix; E1 and E2—Viscoelastic spring constant modulus; Ee—Equilibrium elastic modulus; θ1, θ2—Characteristic relaxation times.Liu[35]
    Notes: $\varepsilon $—Strain; $\mathop \varepsilon \limits^. $—Strain rate; $\dot\varepsilon_0 $—Reference strain rate; ηDIF—Dynamic increase factor; ${ { {\dot\tau _k}^* } }$—Shear strength; φσ, βσ—Constant.
    下载: 导出CSV

    表  2  相应物质命名

    Table  2.   Naming of the corresponding substance

    Sample Anchor length/
    mm
    Pretension/
    kN
    Drop height/
    mm
    C1-L150-P40-H1000 150 40 1 000
    C3-L250-P40-H600 250 40 600
    C8-L250-P40-H200 250 40 200
    C2-L250-P20-H600 250 20 600
    C4-L250-P50-H600 250 50 600
    C6-L150-P40-H200 150 40 200
    C7-L200-P40-H200 200 40 200
    下载: 导出CSV
  • [1] YANG Y, FAHMY M F, GUAN S, et al. Properties and appli-cations of FRP cable on long-span cable-supported bridges: A review[J]. Composites Part B: Engineering,2020,190:107934. doi: 10.1016/j.compositesb.2020.107934
    [2] FENG B, WANG X, WU Z S. Fatigue life assessment of FRP cable for long-span cable-stayed bridge[J]. Composite Structures,2019,210:159-166. doi: 10.1016/j.compstruct.2018.11.039
    [3] ZHAO J F, MEI K H, WU J, et al. Long-term mechanical properties of FRP tendon-anchor systems—A review[J]. Construction and Building Materials,2020,230:117017. doi: 10.1016/j.conbuildmat.2019.117017
    [4] LIU Y, ZWINGMANN B, SCHLAICH M. Carbon fiber reinforced polymer for cable structures—A review[J]. Polymers, 2015, 7(10): 2078-2099.
    [5] WU Q, ZHI X, LI Q, et al. Experimental and numerical studies of GFRP-reinforced steel tube under low-velocity transverse impact[J]. International Journal of Impact Engineering,2019,127:135-153. doi: 10.1016/j.ijimpeng.2019.01.010
    [6] 舒林, 许红胜, 曾毅杰, 等. 影响斜拉索运营寿命的各种因素分析[J]. 中外公路, 2017, 37(1):84-88.

    SHU Lin, XU Hongsheng, ZENG Yijie, et al. Analysis of various factors affecting operation life of stay cable[J]. Journal of China & Foreign Highway,2017,37(1):84-88(in Chinese).
    [7] 方亚威. 不同温度作用下碳纤维复合材料筋的静力和抗冲击性能研究[D]. 长沙: 湖南大学, 2020.

    FANG Yawei. Investigation on static and impact behavior of carbon fiber reinforced polymer bar with considering temperature effect[D]. Changsha: Hunan University, 2020(in Chinese).
    [8] MUGAHED A Y H, ALYOUSEF R, RASHID R S M, et al. Properties and applications of FRP in strengthening RC structures: A review[J]. Structures,2018,16:208-238. doi: 10.1016/j.istruc.2018.09.008
    [9] WANG X, WU Z, WU G, et al. Enhancement of basalt FRP by hybridization for long-span cable-stayed bridge[J]. Composites Part B: Engineering,2013,44(1):184-192. doi: 10.1016/j.compositesb.2012.06.001
    [10] CHOCRON S, CARPENTER A J, SCOTT N L, et al. Impact on carbon fiber composite: Ballistic tests, material tests, and computer simulations[J]. International Journal of Impact Engineering,2019,131:39-56. doi: 10.1016/j.ijimpeng.2019.05.002
    [11] FANG Y, FANG Z, JIANG R, et al. Effect of temperature on the transverse impact performance of preloaded CFRP wire[J]. Composite Structures,2020,231:111464. doi: 10.1016/j.compstruct.2019.111464
    [12] 肖琳. CFRP层合板低速冲击行为与损伤机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    XIAO Lin. Research on low velocity impact behavior and damage mechanism of CFRP laminates[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [13] ZHANG S, CAPRANI C C, HEIDARPOUR A. Strain rate studies of pultruded glass fibre reinforced polymer material properties: A literature review[J]. Construction and Building Materials,2018,171:984-1004. doi: 10.1016/j.conbuildmat.2018.03.113
    [14] AHMED A, ZILLUR R M, OU Y, et al. A review on the tensile behavior of fiber-reinforced polymer composites under varying strain rates and temperatures[J]. Construction and Building Materials,2021,294:123565. doi: 10.1016/j.conbuildmat.2021.123565
    [15] PERRY J I, WALLEY S M. Measuring the effect of strain rate on deformation and damage in fibre-reinforced composites: A review[J]. Journal of Dynamic Behavior of Materials,2022,8:178-213. doi: 10.1007/s40870-022-00331-0
    [16] OU Y, ZHU D, ZHANG H, et al. Mechanical properties and failure characteristics of CFRP under intermediate strain rates and varying temperatures[J]. Composites Part B: Engineering,2016,95:123-136. doi: 10.1016/j.compositesb.2016.03.085
    [17] CHEN X, LI Y, ZHI Z, et al. The compressive and tensile behavior of a 0/90 C fiber woven composite at high strain rates[J]. Carbon,2013,61:97-104. doi: 10.1016/j.carbon.2013.04.073
    [18] HOU J P, RUIZ C. Measurement of the properties of woven CFRP T300/914 at different strain rates[J]. Composites Science and Technology,2000,60(15):2829-2834. doi: 10.1016/S0266-3538(00)00151-2
    [19] TANIGUCHI N, NISHIWAKI T, KAWADA H. Tensile strength of unidirectional CFRP laminate under high strain rate[J]. Advanced Composite Materials,2007,16(2):167-180. doi: 10.1163/156855107780918937
    [20] AL-ZUBAIDY H, ZHAO X L, AL-MAHAIDI R. Mechanical characterisation of the dynamic tensile properties of CFRP sheet and adhesive at medium strain rates[J]. Composite Structures,2013,96:153-164. doi: 10.1016/j.compstruct.2012.09.032
    [21] ZHANG Y, SUN L, LI L, et al. Effects of strain rate and high temperature environment on the mechanical performance of carbon fiber reinforced thermoplastic composites fabri-cated by hot press molding[J]. Composites Part A: Applied Science and Manufacturing,2020,134:105905. doi: 10.1016/j.compositesa.2020.105905
    [22] ZHANG X, SHI Y, LI Z X. Experimental study on the tensile behavior of unidirectional and plain weave CFRP lami-nates under different strain rates[J]. Composites Part B: Engineering,2019,164:524-536. doi: 10.1016/j.compositesb.2019.01.067
    [23] AL-MOSAWE A, AL-MAHAIDI R, ZHAO X L. Engineering properties of CFRP laminate under high strain rates[J]. Composite Structures,2017,180:9-15. doi: 10.1016/j.compstruct.2017.08.005
    [24] GOMEZ-DEL R T, BARBERO E, ZAERA R, et al. Dynamic tensile behaviour at low temperature of CFRP using a split Hopkinson pressure bar[J]. Composites Science and Technology, 2005, 65(1): 61-71.
    [25] ZHANG X, HAO H, SHI Y, et al. Static and dynamic material properties of CFRP/epoxy laminates[J]. Construction and Building Materials,2016,114:638-649. doi: 10.1016/j.conbuildmat.2016.04.003
    [26] THOMSON D, QUINO G, CUI H, et al. Strain-rate and off-axis loading effects on the fibre compression strength of CFRP laminates: Experiments and constitutive modelling[J]. Composites Science and Technology,2020,195:108210. doi: 10.1016/j.compscitech.2020.108210
    [27] 张哲绎. 复合材料的动态能量吸收性能研究[D]. 长沙: 湖南大学, 2020.

    ZHANG Zheyi. Research on the dynamic energy absorption property of composite materials[D]. Changsha: Hunan University, 2020(in Chinese).
    [28] TAY T, ANG H, SHIM V J C S. An empirical strain rate-dependent constitutive relationship for glass-fibre reinforced epoxy and pure epoxy[J]. Composite Structures,1995,33(4):201-210. doi: 10.1016/0263-8223(95)00116-6
    [29] SHOKRIEH M M, OMIDI M J. Investigation of strain rate effects on in-plane shear properties of glass/epoxy composites[J]. Composite Structures,2009,91(1):95-102. doi: 10.1016/j.compstruct.2009.04.035
    [30] 许沭华, 王肖钧, 张刚明, 等. Kevlar纤维增强复合材料动态压缩力学性能实验研究[J]. 实验力学, 2001(1):26-33. doi: 10.3969/j.issn.1001-4888.2001.01.005

    XU Muhua, WANG Xiaojun, ZHANG Gangming, et al. Experimental study on dynamic compressive mechanical properties of Kevlar fiber reinforced composites[J]. Journal of Experimental Mechanics,2001(1):26-33(in Chinese). doi: 10.3969/j.issn.1001-4888.2001.01.005
    [31] 韩小平, 韩省亮, 李华, 等. 复合材料率相关本构模型的研究[J]. 机械科学与技术, 1999(1):125. doi: 10.3321/j.issn:1003-8728.1999.01.044

    HAN Xiaoping, HAN Xingliang, LI Hua, et al. Research on the rate-dependent constitutive model of composite materials[J]. Mechanical Science and Technology for Aerospace Engineering,1999(1):125(in Chinese). doi: 10.3321/j.issn:1003-8728.1999.01.044
    [32] 方盈盈. 高应变率下碳纤维复合材料动态力学性能研究[D]. 大连: 大连理工大学, 2018.

    FANG Yingying. Study on dynamic mechanical properties of carbon fiber reinforced composite materials under high strain rate[D]. Dalian: Dalian University of Technology, 2018(in Chinese).
    [33] ZHAO J, GUO L, ZHANG L, et al. Experimental investigations on the in-plane dynamic compressive behavior and upper limit of constant strain rate for 2D twill weave carbon fiber reinforced composite[J]. Composites Part B: Engineering,2021,220:108993. doi: 10.1016/j.compositesb.2021.108993
    [34] KARIM M R. Constitutive modeling and failure criteria of carbon-fiber reinforced polymers under high strain rates[D]. Ohio: University of Akron, 2005.
    [35] 刘柳. 抗高冲击载荷CFRP层合结构力学性能研究[D]. 北京: 北京理工大学, 2016.

    LIU Liu. Mechanical property study of CFRP laminates subjected to high impact compressive loads[D]. Beijing: Beijing Institute of Technology, 2016(in Chinese).
    [36] ATAS C, SAYMAN O. An overall view on impact response of woven fabric composite plates[J]. Composite Structures,2008,82(3):336-345. doi: 10.1016/j.compstruct.2007.01.014
    [37] SHAH S Z H, KARUPPANAN S, MEGAT-YUSOFF P S M, et al. Impact resistance and damage tolerance of fiber reinforced composites: A review[J]. Composite Structures,2019,217:100-121. doi: 10.1016/j.compstruct.2019.03.021
    [38] BORIA S, SCATTINA A, BELINGARDI G. Impact behavior of a fully thermoplastic composite[J]. Composite Structures,2017,167:63-75. doi: 10.1016/j.compstruct.2017.01.083
    [39] SIMEOLI G, ACIERNO D, MEOLA C, et al. The role of interface strength on the low velocity impact behaviour of PP/glass fibre laminates[J]. Composites Part B: Engineering,2014,62:88-96. doi: 10.1016/j.compositesb.2014.02.018
    [40] KISS P, GLINZ J, STADLBAUER W, et al. The effect of thermally desized carbon fibre reinforcement on the flexural and impact properties of PA6, PPS and PEEK composite laminates: A comparative study[J]. Composites Part B: Engineering,2021,215:108844. doi: 10.1016/j.compositesb.2021.108844
    [41] SORRENTINO L, DE VASCONCELLOS D S, D'AURIA M, et al. Effect of temperature on static and low velocity impact properties of thermoplastic composites[J]. Composites Part B: Engineering,2017,113:100-110. doi: 10.1016/j.compositesb.2017.01.010
    [42] SAGHAFI H, FOTOUHI M, MINAK G. Improvement of the impact properties of composite laminates by means of nano-modification of the matrix—A review[J]. Applied Sciences,2018,8(12):2406. doi: 10.3390/app8122406
    [43] ADAK N C, CHHETRI S, KUILA T, et al. Effects of hydrazine reduced graphene oxide on the inter-laminar fracture toughness of woven carbon fiber/epoxy composite[J]. Composites Part B: Engineering,2018,149:22-30. doi: 10.1016/j.compositesb.2018.05.009
    [44] DELFOSSE D, POURSARTIP A. Energy-based approach to impact damage in CFRP laminates[J]. Composites Part A: Applied Science and Manufacturing,1997,28(7):647-655. doi: 10.1016/S1359-835X(96)00151-0
    [45] VIEILLE B, CASADO V M, BOUVET C. About the impact behavior of woven-ply carbon fiber-reinforced thermoplastic- and thermosetting-composites: A comparative study[J]. Composite Structures,2013,101:9-21. doi: 10.1016/j.compstruct.2013.01.025
    [46] MITREVSKI T, MARSHALL I H, THOMSON R. The influence of impactor shape on the damage to composite lami-nates[J]. Composite Structures,2006,76(1):116-122.
    [47] ZHANG J, LI Z, ZHANG Q, et al. Study of fiber modulus effect on impact energy absorption characteristics of composite laminates at normal and oblique impacts[J]. Materials Research Express,2019,6(8):085610. doi: 10.1088/2053-1591/ab1ad4
    [48] ALMUDAIHESH F, HOLFORD K, PULLIN R, et al. The influence of water absorption on unidirectional and 2D woven CFRP composites and their mechanical performance[J]. Composites Part B: Engineering,2020,182:107626. doi: 10.1016/j.compositesb.2019.107626
    [49] 马名旭. 碳纤维增强树脂基复合材料湿热环境下冲击损伤的研究[D]. 天津: 中国民航大学, 2016.

    MA Mingxu. Study of the impact injury of carbon fiber-reinforced polymer composites in moist heat environment[D]. Tianjin: Civil Aviation University of China, 2016(in Chinese).
    [50] AGRAWAL S, SINGH K K, SARKAR P K. Impact damage on fibre-reinforced polymer matrix composite—A review[J]. Journal of Composite Materials,2013,48(3):317-332.
    [51] BHUDOLIA S K, JOSHI S C. Low-velocity impact response of carbon fibre composites with novel liquid methylmethacrylate thermoplastic matrix[J]. Composite Structures,2018,203:696-708. doi: 10.1016/j.compstruct.2018.07.066
    [52] SAFRI S N A, SULTAN M T H, JAWAID M, et al. Impact behaviour of hybrid composites for structural applications: A review[J]. Composites Part B: Engineering,2018,133:112-121. doi: 10.1016/j.compositesb.2017.09.008
    [53] PAPA I, BOCCARUSSO L, LANGELLA A, et al. Carbon/glass hybrid composite laminates in vinylester resin: Bending and low velocity impact tests[J]. Composite Structures,2020,232:111571. doi: 10.1016/j.compstruct.2019.111571
    [54] WANG X, HU B, FENG Y, et al. Low velocity impact properties of 3D woven basalt/aramid hybrid composites[J]. Composites Science and Technology,2008,68(2):444-450. doi: 10.1016/j.compscitech.2007.06.016
    [55] 沈真, 张子龙, 王进, 等. 复合材料损伤阻抗和损伤容限的性能表征[J]. 复合材料学报, 2004(5):140-145.

    SHEN Zhen, ZHANG Zilong, WANG Jin, et al. Characterization of damage resistance and damage tolerance behaviour of composite laminates[J]. Acta Materiae Compositae Sinica, 2004(5):140-145(in Chinese).
    [56] ANDREW J J, SRINIVASAN S M, AROCKIARAJAN A, et al. Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical review[J]. Composite Structures,2019,224:111007. doi: 10.1016/j.compstruct.2019.111007
    [57] TIBERKAK R, BACHENE M, RECHAK S, et al. Damage prediction in composite plates subjected to low velocity impact[J]. Composite Structures,2008,83(1):73-82. doi: 10.1016/j.compstruct.2007.03.007
    [58] 张辰. 碳/玻单向经编混杂复合材料抗冲击性能及损伤机理研究[D]. 上海: 东华大学, 2021.

    ZHANG Chen. Study on impact resistance properties and damage mechanism of carbon/glass unidirectional warp knitted hybrid composites[D]. Shanghai: Donghua University, 2021(in Chinese).
    [59] SURESH K C, ARUMUGAM V, SANTULLI C. Characterization of indentation damage resistance of hybrid composite laminates using acoustic emission monitoring[J]. Composites Part B: Engineering,2017,111:165-178. doi: 10.1016/j.compositesb.2016.12.012
    [60] 向宇, 方志, 王常林. 碳纤维拉索及其锚固系统抗冲击性能试验研究[J]. 土木工程学报, 2015, 48(12):82-90. doi: 10.15951/j.tmgcxb.2015.12.012

    XIANG Yu, FANG Zhi, WANG Changlin. Experimental study on impact behaciors of CFRP cable and its anchoring system[J]. China Civil Engineering Journal,2015,48(12):82-90(in Chinese). doi: 10.15951/j.tmgcxb.2015.12.012
    [61] 向宇. RPC的抗疲劳性能与CFRP索的抗冲击性能研究[D]. 长沙: 湖南大学, 2017.

    XIANG Yu. Investigation on fatigue behavior of RPC and impact behavior of CFRP cables[D]. Changsha: Hunan University, 2017(in Chinese).
    [62] 王常林. 碳纤维拉索及其锚固系统横向受力性能试验研究[D]. 长沙: 湖南大学, 2015.

    WANG Changlin. Experimental research on behavior of CFRP cable and anchorage subjecting to lateral force[D]. Changsha: Hunan University, 2015(in Chinese).
    [63] XIANG Y, FANG Z, WANG C, et al. Experimental investigations on impact behavior of CFRP cables under pretension[J]. Journal of Composites for Construction,2017,21(2):04016087. doi: 10.1061/(ASCE)CC.1943-5614.0000745
    [64] 黄道斌. 碳纤维拉索的温度效应及车撞响应研究[D]. 长沙: 湖南大学, 2019.

    HUANG Daobin. Investigation on temperature effect and vehicle impact response of CFRP cables[D]. Changsha: Hunan University, 2019(in Chinese).
    [65] FANG Y, FANG Z, JIANG R, et al. Transverse static and low-velocity impact behavior of CFRP wires under pretension[J]. Journal of Composites for Construction, 2019, 23(5): 04019041.
    [66] XIANG Y, FANG Z, FANG Y. Single and multiple impact behavior of CFRP cables under pretension[J]. Construction and Building Materials,2017,140:521-533. doi: 10.1016/j.conbuildmat.2017.02.112
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1728
  • HTML全文浏览量:  414
  • PDF下载量:  291
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 修回日期:  2022-05-15
  • 录用日期:  2022-06-04
  • 网络出版日期:  2022-06-16
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回