留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维增强树脂基复合材料及其拉索抗低速冲击性能综述

王安妮 岳清瑞 刘晓刚

王安妮, 岳清瑞, 刘晓刚. 碳纤维增强树脂基复合材料及其拉索抗低速冲击性能综述[J]. 复合材料学报, 2022, 40(0): 1-13
引用本文: 王安妮, 岳清瑞, 刘晓刚. 碳纤维增强树脂基复合材料及其拉索抗低速冲击性能综述[J]. 复合材料学报, 2022, 40(0): 1-13
Anni WANG, Qingrui YUE, Xiaogang LIU. Low-velocity impact resistance of carbon fiber reinforced polymer composite and its cables:A review[J]. Acta Materiae Compositae Sinica.
Citation: Anni WANG, Qingrui YUE, Xiaogang LIU. Low-velocity impact resistance of carbon fiber reinforced polymer composite and its cables:A review[J]. Acta Materiae Compositae Sinica.

碳纤维增强树脂基复合材料及其拉索抗低速冲击性能综述

基金项目: 国家重点研发计划(2021 YFB3704403),国家自然科学基金(52192663)
详细信息
    通讯作者:

    刘晓刚,工学博士,教授,博士生导师,研究方向为钢结构与组合结构研究 E-mail: liuxiaogang@ustb.edu.cn

Low-velocity impact resistance of carbon fiber reinforced polymer composite and its cables:A review

Funds: National Key Research and Development Program of China(2021 YFB3704403);National Natural Science Foundation of China(52192663)
  • 摘要: 碳纤维增强树脂基复合材料(carbon fiber reinforced polymer composite, CFRP)索具有轻质高强特性和优异的耐腐蚀疲劳性能,可替代钢索应用于桥梁结构中以应对桥梁更大跨度、更恶劣服役环境的需求。然而CFRP索较差的抗低速冲击性能导致其在服役期间面临车辆、落石等撞击的威胁。为全面了解CFRP的抗冲击性能,促进CFRP索在工程结构中的应用,本文对CFRP及其索的基础动态力学性能、冲击响应以及损伤失效研究现状进行了总结。现有研究表明,CFRP具有应变率敏感性,但CFRP的应变率效应尚不明确,需建立包含全应变率范围的力学性能数据库;CFRP层合板抗冲击性能研究较为全面,然而截面形式差异、较大的长细比、轴向应力耦合等因素导致CFRP层合板的研究结论不能完全适用于CFRP拉索;现有研究停留在冲击能量、锚固长度以及温度对小吨位CFRP拉索抗冲击性能的影响,缺乏对大吨位CFRP拉索抗冲击性能以及损伤失效机理的研究;CFRP拉索在车辆撞击下破断时的峰值索力远低于其轴向拉伸破断力,应对拉索进行严格的防撞设计。

     

  • 图  1  拉索及吊杆遭受车辆撞击[7]

    Figure  1.  Cable hit by vehicle[7]

    图  2  土木工程用各类纤维增强树脂基复合材料及钢材性能对比[10, 11]

    Figure  2.  Comparison of properties of various fibers reinforced polymer composites and steel for civil engineering[10, 11]

    图  3  应变率范围定义

    Figure  3.  Definition of the strain rate range

    图  4  不同能量下未穿透的碳纤维增强树脂基复合材料力-位移曲线[36]

    Figure  4.  Force-displacement curves of unpenetrated carbon fiber reinforced polymer composites under different energies[36]

    图  5  穿透碳纤维增强树脂基复合材料的力-位移曲线: (a) 厚板中穿透;(b) 薄板开始穿孔;(c) 薄板完全穿孔[36]

    Figure  5.  (a) penetration in a thick CFRP plate, (b) initiation of perforation in a thin CFRP plate, and (c) complete perforation in a thin CFRP plate[36]

    图  6  冲击荷载作用下纤维增强树脂基复合材料吸收能量-时间曲线: (a) 试样未穿孔;(b) 试样穿孔[36]

    Figure  6.  Energy absorption-time curve of fiber reinforced polymer composites under impact load: (a) unpenetrated specimens; (b) penetration specimens[36]

    图  7  纤维增强树脂基复合材料的断裂韧性与基体韧性的关系[42]

    Figure  7.  Mode I interlaminar fracture toughness of fiber reinforced polymer composites and matrix toughness[42]

    图  8  不同冲击能量下碳纤维增强树脂基复合材料的力-时间曲线[51]

    Figure  8.  Load-time curve of CFRP under various impact energy[51]

    图  9  冲击荷载作用下CFRP内部损伤:(a)低冲击能量;(b)中冲击能量;(c)高冲击能量[56]

    Figure  9.  Schematic drawing of internal damages of CFRP under impact (a) low energy, (b) medium energy and (c) high energy [56]

    图  10  CFRP绞线的冲击力-时间曲线:(a) 不同冲击能量;(b) 不同预应力;(c) 不同锚固长度[62]

    Figure  10.  Impact force-curve of CFRP strands (a) specimens with different impact energies; (b) specimens with different pretensions; (c) specimens with different bond lengths[62]

    图  11  不同温度下CFRP绞线的冲击响应[9]

    Figure  11.  Impact force histories of CFRP wires for the specimens at different temperatures[9]

    表  1  纤维增强树脂基复合材料宏观唯象动态本构模型

    Table  1.   Macroscopic phenomenological dynamic constitutive model of fiber reinforced polymer composites

    No.Dynamic constitutive modelInstructionsReference
    1$\sigma = {\sigma _s} + {\sigma _d}$
    ${\sigma _d} = {q_0}\varepsilon + {q_l}{\varepsilon ^n}{(\mathop \varepsilon \limits^. )^p}$
    The stress is divided into static and dynamic parts, where${\sigma _s}$is static stress ${\sigma _d}$is dynamic stressTay et al.[28]、Shokrieh et al.[29]
    2$\sigma = E\varepsilon (1 - D){({{{\mathop \varepsilon \limits^. } \mathord{\left/ {\vphantom {{\mathop \varepsilon \limits^. } {\mathop \varepsilon \limits^. }}} \right. } {\mathop \varepsilon \limits^. }}_0})^m}$
    $D = 1 - \exp \left[ { - \dfrac{1}{ {ne} }{\left( {\dfrac{ {E\varepsilon } }{Y} } \right)^n} } \right]$
    Considering the strain rate effect and damage softening, D is the damage variable, and m is the strain rate coefficientXu et al.[30]
    3$\sigma = (A + B{\varepsilon ^n})(1 + C\ln { \dot \varepsilon ^*})(1 - {T^{*m} })$
    $\mathop \varepsilon \limits^. = \dfrac{ {\mathop \varepsilon \limits^. } }{ {\mathop { {\varepsilon _0} }\limits^. } },{T^*} = \dfrac{ {T - {T_r} } }{ { {T_{melt} } - {T_r} } }$
    Considering the coupling effect of temperature and strain rate effect. m is the temperature softening index, Tmelt is the melting temperature of the material, Tr is the reference temperatureHan et al.[31]
    4$\sigma _i^{st} = {\sigma _i} \times DIF$
    $DIF = \left\{ { \bigg[\tanh ((\log ({ {\mathop \varepsilon \limits^. } \mathord{\left/ {\vphantom { {\mathop \varepsilon \limits^. } {\mathop { {\varepsilon _0} }\limits^. } } } \right. } {\mathop { {\varepsilon _0} }\limits^. } }) - A) \times B\bigg] \times \left[ {\dfrac{C}{ {(C + 1)/2} } - 1} \right] + 1} \right\} \times \dfrac{ {C + 1} }{2}$
    Considering the dynamic enhancement effect. the dynamic enhancement factor is directly introducedZhang[27]
    5${\sigma _d} = {\sigma _s}({\varphi _\sigma }{\log _{10}}(\mathop \varepsilon \limits^. ) + {\beta _\sigma })$Al-Zubaidy et al[20]
    6$ {\eta _{DIF}} = \left\{ {\begin{array}{*{20}{c}} {1 + A\log ({{\mathop \varepsilon \limits^. } \mathord{\left/ {\vphantom {{\mathop \varepsilon \limits^. } {\mathop {{\varepsilon _0})}\limits^. }}} \right. } {\mathop {{\varepsilon _0})}\limits^. }}} \\ 1 \end{array}} \right. $Fang[32]
    7$$\sigma = {E_l}\varepsilon + \alpha {\varepsilon ^2} + \beta {\varepsilon ^3} + E\theta \mathop \varepsilon \limits^. \left[ {1 - \exp \left( { - \dfrac{\varepsilon }{ {\theta \mathop \varepsilon \limits^. } }} \right)} \right]$
    Viscoelastic constitutive model (consisting of nonlinear spring elements connected in parallel with Maxwell originals)
    Zhao et al.[33]
    8$\sigma (t) = {E_0}\varepsilon (t) + \mathop \varepsilon \limits^. \displaystyle \sum\limits_{k = 1}^N { {\eta _k} } \left[ {1 - \exp \left( { - \dfrac{ {\varepsilon (t)} }{ {\mathop {\varepsilon {\tau _k}^*}\limits^. } }} \right)} \right]$A linear elastic element in parallel with multiple Maxwell bodiesKarim et al.[34]
    9$\sigma (\varepsilon ) = {E_e} + {E_1}{\theta _1}\mathop { {\varepsilon _0} }\limits^. \left( {1 - {e^{ - \tfrac{\varepsilon }{ {\mathop { {\varepsilon _0}{\theta _1} }\limits^. } } } }} \right) + {E_2}{\theta _2}\mathop { {\varepsilon _0} }\limits^. \left( {1 - {e^{ - \tfrac{\varepsilon }{ {\mathop { {\varepsilon _0}{\theta _2} }\limits^. } } } }} \right)$Bridging model of fiber and matrixLiu[35]
    Notes: $\varepsilon $is strain and $\mathop \varepsilon \limits^. $ is strain rate.
    下载: 导出CSV
  • [1] YANG Y, FAHMY M F, GUAN S, et al. Properties and applications of FRP cable on long-span cable-supported bridges: A review[J]. Compistes:part B,2020,190:107934. doi: 10.1016/j.compositesb.2020.107934
    [2] FENG B, WANG X, WU Z J C S. Fatigue life assess-ment of FRP cable for long-span cable-stayed bridge[J]. Composite Structures,2019,210:159-166. doi: 10.1016/j.compstruct.2018.11.039
    [3] ZHAO J, MEI K, WU J J C, et al. Long-term mechani-cal properties of FRP tendon–anchor systems—A re-view[J]. Construction and Building Materials,2020,230:117017. doi: 10.1016/j.conbuildmat.2019.117017
    [4] YANG Y, FAHMY M F M, GUAN S, et al. Properties and applications of FRP cable on long-span cable-supported bridges: A review[J]. Composites Part B:Engineering,2020,190:107934. doi: 10.1016/j.compositesb.2020.107934
    [5] WU Q, ZHI X, LI Q, et al. Experimental and numerical studies of GFRP-reinforced steel tube under low-velocity transverse impact[J]. International Journal of Impact Engineering,2019,127:135-153. doi: 10.1016/j.ijimpeng.2019.01.010
    [6] 舒林, 许红胜, 曾毅杰, 等. 影响斜拉索运营寿命的各种因素分析[J]. 中外公路, 2017, 37(1):84-8.

    SHU Lin, XU Hongsheng, ZENG Yijie, et al. Analysis of Various Factors Affecting Operation Life of Stay Cable[J]. Journal of China & Foreign Highway,2017,37(1):84-8(in Chinese).
    [7] 方亚威. 不同温度作用下碳纤维复合材料筋的静力和抗冲击性能研究[D]. 长沙: 湖南大学, 2020.

    FANG Yawei. Investigation on static and impact behav-ior of carbon fiber reinforced polymer bar with con-sidering temperature effect[D]. Changsha: Hunan University, 2020(in Chinese).
    [8] CHOCRON S, CARPENTER A J, SCOTT N L, et al. Impact on carbon fiber composite: Ballistic tests, material tests, and computer simulations[J]. International Journal of Impact Engineering,2019,131:39-56. doi: 10.1016/j.ijimpeng.2019.05.002
    [9] FANG Y, FANG Z, JIANG R, et al. Effect of temperature on the transverse impact performance of preloaded CFRP wire[J]. Composite Structures,2020,231:111464. doi: 10.1016/j.compstruct.2019.111464
    [10] MUGAHED AMRAN Y H, ALYOUSEF R, RASHID R S M, et al. Properties and applications of FRP in strengthening RC structures: A review[J]. Structures,2018,16:208-238. doi: 10.1016/j.istruc.2018.09.008
    [11] WANG X, WU Z, WU G, et al. Enhancement of basalt FRP by hybridization for long-span cable-stayed bridge[J]. Composites Part B:Engineering,2013,44(1):184-192. doi: 10.1016/j.compositesb.2012.06.001
    [12] 肖琳. CFRP层合板低速冲击行为与损伤机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    XIAO Lin. Research on low velocity impact behavior and damage mechanism of CFRP laminates[D], Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [13] ZHANG S, CAPRANI C C, HEIDARPOUR A. Strain rate studies of pultruded glass fibre reinforced polymer material properties: A literature review[J]. Construction and Building Materials,2018,171:984-1004. doi: 10.1016/j.conbuildmat.2018.03.113
    [14] AHMED A, ZILLUR RAHMAN M, OU Y, et al. A review on the tensile behavior of fiber-reinforced polymer composites under varying strain rates and temperatures[J]. Construction and Building Materials,2021,294:123565. doi: 10.1016/j.conbuildmat.2021.123565
    [15] PERRY J I, WALLEY S M. Measuring the effect of strain rate on deformation and damage in fibre-reinforced composites: a review[J]. Journal of Dynamic Behavior of Materials,2022,8:178-213. doi: 10.1007/s40870-022-00331-0
    [16] OU Y, ZHU D, ZHANG H, et al. Mechanical properties and failure characteristics of CFRP under intermediate strain rates and varying temperatures[J]. Composites Part B:Engineering,2016,95:123-136. doi: 10.1016/j.compositesb.2016.03.085
    [17] CHEN X, LI Y, ZHI Z, et al. The compressive and tensile behavior of a 0/90 C fiber woven composite at high strain rates[J]. Carbon,2013,61:97-104. doi: 10.1016/j.carbon.2013.04.073
    [18] HOU J P, RUIZ C. Measurement of the properties of woven CFRP T300/914 at different strain rates[J]. Composites Science and Technology,2000,60(15):2829-2834. doi: 10.1016/S0266-3538(00)00151-2
    [19] TANIGUCHI N, NISHIWAKI T, KAWADA H. Tensile strength of unidirectional CFRP laminate under high strain rate[J]. Advanced Composite Materials,2007,16(2):167-180. doi: 10.1163/156855107780918937
    [20] AL-ZUBAIDY H, ZHAO X-L, AL-MAHAIDI R. Mechanical characterisation of the dynamic tensile properties of CFRP sheet and adhesive at medium strain rates[J]. Composite Structures,2013,96:153-164. doi: 10.1016/j.compstruct.2012.09.032
    [21] ZHANG Y, SUN L, LI L, et al. Effects of strain rate and high temperature environment on the mechanical performance of carbon fiber reinforced thermoplastic composites fabricated by hot press molding[J]. Composites Part A:Applied Science and Manufacturing,2020,134:105905. doi: 10.1016/j.compositesa.2020.105905
    [22] ZHANG X, SHI Y, LI Z-X. Experimental study on the tensile behavior of unidirectional and plain weave CFRP laminates under different strain rates[J]. Composites Part B:Engineering,2019,164:524-536. doi: 10.1016/j.compositesb.2019.01.067
    [23] AL-MOSAWE A, AL-MAHAIDI R, ZHAO X-L. Engineering properties of CFRP laminate under high strain rates[J]. Composite Structures,2017,180:9-15. doi: 10.1016/j.compstruct.2017.08.005
    [24] AL-ZUBAIDY H, ZHAO X-L, AL-MAHAIDI R J C S. Mechanical characterisation of the dynamic tensile properties of CFRP sheet and adhesive at medium strain rates[J]. Composite Structures,2013,96:153-164. doi: 10.1016/j.compstruct.2012.09.032
    [25] ZHANG X, HAO H, SHI Y, et al. Static and dynamic material properties of CFRP/epoxy laminates[J]. Construction and Building Materials,2016,114:638-649. doi: 10.1016/j.conbuildmat.2016.04.003
    [26] THOMSON D, QUINO G, CUI H, et al. Strain-rate and off-axis loading effects on the fibre compression strength of CFRP laminates: Experiments and constitutive modelling[J]. Composites Science and Technology,2020,195:108210. doi: 10.1016/j.compscitech.2020.108210
    [27] 张哲绎. 复合材料的动态能量吸收性能研究[D]. 长沙: 湖南大学, 2020.

    ZHANG Zheyi. Research on the dynamic energy ab-sorption property of composite materials [D]. Chang-sha: Hunan University, 2020(in Chinese).
    [28] TAY T, ANG H, SHIM V J C S. An empirical strain rate-dependent constitutive relationship for glass-fibre reinforced epoxy and pure epoxy[J]. Composite Structures,1995,33(4):201-210. doi: 10.1016/0263-8223(95)00116-6
    [29] SHOKRIEH M M, OMIDI M J. Investigation of strain rate effects on in-plane shear properties of glass/epoxy composites[J]. Composite Structures,2009,91(1):95-102. doi: 10.1016/j.compstruct.2009.04.035
    [30] 许沭华, 王肖钧, 张刚明, 等. Kevlar纤维增强复合材料动态压缩力学性能实验研究[J]. 实验力学, 2001(01):26-33. doi: 10.3969/j.issn.1001-4888.2001.01.005

    XU Muhua, WANG Xiaojun, ZHANG Gangming, et al. Experimental study on dynamic compressive mechan-ical properties of Kevlar fiber reinforced composites[J]. Journal of Experimental Mechanics,2001(01):26-33(in Chinese). doi: 10.3969/j.issn.1001-4888.2001.01.005
    [31] 韩小平, 韩省亮, 李华, 等. 复合材料率相关本构模型的研究[J]. 机械科学与技术, 1999(01):125. doi: 10.3321/j.issn:1003-8728.1999.01.044

    HAN Xiaoping, HAN Xingliang, LI Hua, et al. Re-search on the Rate-dependent Constitutive Model of Composite Materials[J]. Mechanical Science and Tech-nology for Aerospace Engineering,1999(01):125(in Chinese). doi: 10.3321/j.issn:1003-8728.1999.01.044
    [32] 方盈盈. 高应变率下碳纤维复合材料动态力学性能研究[D]. 大连: 大连理工大学, 2018.

    FANG Yingying. Study on dynamic mechanical prop-erties of carbon fiber reinforced composite materials under high strain rate[D]. Dalian: Dalian University of Technology, 2018(in Chinese).
    [33] ZHAO J, GUO L, ZHANG L, et al. Experimental investigations on the in-plane dynamic compressive behavior and upper limit of constant strain rate for 2 D twill weave carbon fiber reinforced composite[J]. Composites Part B:Engineering,2021,220:108993. doi: 10.1016/j.compositesb.2021.108993
    [34] KARIM M R. Constitutive modeling and failure criteria of carbon-fiber reinforced polymers under high strain rates[D]; University of Akron, 2005.
    [35] 刘柳. 抗高冲击载荷CFRP层合结构力学性能研究 [D]. 北京: 北京理工大学, 2016.

    LIU Liu. Mechanical property study of CFRP laminates subjected to high impact compressive loads[D]. Bei-jing: Beijing Institute of Technology, 2016(in Chinese).
    [36] ATAS C, SAYMAN O. An overall view on impact response of woven fabric composite plates[J]. Composite Structures,2008,82(3):336-345. doi: 10.1016/j.compstruct.2007.01.014
    [37] SHAH S Z H, KARUPPANAN S, MEGAT-YUSOFF P S M, et al. Impact resistance and damage tolerance of fiber reinforced composites: a review[J]. Composite Structures,2019,217:100-121. doi: 10.1016/j.compstruct.2019.03.021
    [38] BORIA S, SCATTINA A, BELINGARDI G. Impact behavior of a fully thermoplastic composite[J]. Composite Structures,2017,167:63-75. doi: 10.1016/j.compstruct.2017.01.083
    [39] SIMEOLI G, ACIERNO D, MEOLA C, et al. The role of interface strength on the low velocity impact behaviour of PP/glass fibre laminates[J]. Composites Part B:Engineering,2014,62:88-96. doi: 10.1016/j.compositesb.2014.02.018
    [40] KISS P, GLINZ J, STADLBAUER W, et al. The effect of thermally desized carbon fibre reinforcement on the flexural and impact properties of PA6, PPS and PEEK composite laminates: A comparative study[J]. Composites Part B:Engineering,2021,215:108844. doi: 10.1016/j.compositesb.2021.108844
    [41] SORRENTINO L, DE VASCONCELLOS D S, D'AURIA M, et al. Effect of temperature on static and low velocity impact properties of thermoplastic composites[J]. Composites Part B:Engineering,2017,113:100-110. doi: 10.1016/j.compositesb.2017.01.010
    [42] SAGHAFI H, FOTOUHI M, MINAK G. Improvement of the impact properties of composite laminates by means of nano-modification of the matrix—a review[J]. Applied Sciences,2018,8(12):2406. doi: 10.3390/app8122406
    [43] ADAK N C, CHHETRI S, KUILA T, et al. Effects of hydrazine reduced graphene oxide on the inter-laminar fracture toughness of woven carbon fiber/epoxy composite[J]. Composites Part B:Engineering,2018,149:22-30. doi: 10.1016/j.compositesb.2018.05.009
    [44] DELFOSSE D, POURSARTIP A J C P A A S, MANUFACTURING. Energy-based approach to impact damage in CFRP laminates[J]. Composites Part A:Applied Science and Manufacturing,1997,28(7):647-655. doi: 10.1016/S1359-835X(96)00151-0
    [45] VIEILLE B, CASADO V M, BOUVET C. About the impact behavior of woven-ply carbon fiber-reinforced thermoplastic- and thermosetting-composites: A comparative study[J]. Composite Structures,2013,101:9-21. doi: 10.1016/j.compstruct.2013.01.025
    [46] MITREVSKI T, MARSHALL I H, THOMSON R. The influence of impactor shape on the damage to composite laminates[J]. Composite Structures,2006,76(1):116-122.
    [47] ZHANG J, LI Z, ZHANG Q, et al. Study of fiber modulus effect on impact energy absorption characteristics of composite laminates at normal and oblique impacts[J]. Materials Research Express,2019,6(8):085610. doi: 10.1088/2053-1591/ab1ad4
    [48] ALMUDAIHESH F, HOLFORD K, PULLIN R, et al. The influence of water absorption on unidirectional and 2 D woven CFRP composites and their mechanical performance[J]. Composites Part B:Engineering,2020,182:107626. doi: 10.1016/j.compositesb.2019.107626
    [49] 马名旭. 碳纤维增强树脂基复合材料湿热环境下冲击损伤的研究[D]. 天津: 中国民航大学, 2016.

    MA Minxu. Study of the impact injury of carbon fiber-reinforced polymer composites in moist heat environ-ment[D]. Tianjin: Civil Aviation University of China, 2016(in Chinese).
    [50] AGRAWAL S, SINGH K K, SARKAR P K. Impact damage on fibre-reinforced polymer matrix composite – a review[J]. Journal of Composite Materials,2013,48(3):317-332.
    [51] BHUDOLIA S K, JOSHI S C. Low-velocity impact response of carbon fibre composites with novel liquid Methylmethacrylate thermoplastic matrix[J]. Composite Structures,2018,203:696-708. doi: 10.1016/j.compstruct.2018.07.066
    [52] SAFRI S N A, SULTAN M T H, JAWAID M, et al. Impact behaviour of hybrid composites for structural applications: A review[J]. Composites Part B:Engineering,2018,133:112-121. doi: 10.1016/j.compositesb.2017.09.008
    [53] PAPA I, BOCCARUSSO L, LANGELLA A, et al. Carbon/glass hybrid composite laminates in vinylester resin: Bending and low velocity impact tests[J]. Composite Structures,2020,232:111571. doi: 10.1016/j.compstruct.2019.111571
    [54] WANG X, HU B, FENG Y, et al. Low velocity impact properties of 3 D woven basalt/aramid hybrid composites[J]. Composites Science and Technology,2008,68(2):444-450. doi: 10.1016/j.compscitech.2007.06.016
    [55] 姜智通. 碳纤维复合材料层合板冲击损伤表征方法研究[D]; 大庆: 东北石油大学, 2020.

    Jiang Zhitong. Research on characterization method of impact damage of carbon fiber composite laminate [D]; Daqing: Northeast Petroleum University, 2020(in Chinese).
    [56] ANDREW J J, SRINIVASAN S M, AROCKIARAJAN A, et al. Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical review[J]. Composite Structures,2019,224:111007. doi: 10.1016/j.compstruct.2019.111007
    [57] TIBERKAK R, BACHENE M, RECHAK S, et al. Damage prediction in composite plates subjected to low velocity impact[J]. Composite Structures,2008,83(1):73-82. doi: 10.1016/j.compstruct.2007.03.007
    [58] 张辰. 碳/玻单向经编混杂复合材料抗冲击性能及损伤机理研究[D]. 上海: 东华大学, 2021.

    ZHANG Chen. Study on impact resistance properties and damage mechanism of carbon/glass unidirectional warp knitted hybrid composites[D], Shanghai: Dong-hua University, 2021(in Chinese).
    [59] SURESH KUMAR C, ARUMUGAM V, SANTULLI C. Characterization of indentation damage resistance of hybrid composite laminates using acoustic emission monitoring[J]. Composites Part B:Engineering,2017,111:165-178. doi: 10.1016/j.compositesb.2016.12.012
    [60] 向宇, 方志, 王常林. 碳纤维拉索及其锚固系统抗冲击性能试验研究[J]. 土木工程学报, 2015, 48(12):82-90. doi: 10.15951/j.tmgcxb.2015.12.012

    XIANG Yu, FANG Zhi, WANG Changlin. Experimental study on impact behaciors of CFRP cable and its an-choring system[J]. China Civil Engineering Journal,2015,48(12):82-90(in Chinese). doi: 10.15951/j.tmgcxb.2015.12.012
    [61] 向宇. RPC的抗疲劳性能与CFRP索的抗冲击性能研究[D]; 长沙: 湖南大学, 2017.

    XIANG Yu. Investigation on fatigue behavior of RPC and impact behavior of CFRP cables[D]. Changsha: Hunan University, 2017(in Chinese).
    [62] XIANG Y, FANG Z, WANG C, et al. Experimental Investigations on Impact Behavior of CFRP Cables under Pretension[J]. Journal of Composites for Construction,2017,21(2):04016087. doi: 10.1061/(ASCE)CC.1943-5614.0000745
    [63] 王常林. 碳纤维拉索及其锚固系统横向受力性能试验研究[D]. 长沙: 湖南大学, 2015.

    WANG Changlin. Experimental research on behavior of CFRP cable and anchorage subjecting to lateral force [D]. Changsha: Hunan University, 2015(in Chi-nese).
    [64] 黄道斌. 碳纤维拉索的温度效应及车撞响应研究[D]. 长沙: 湖南大学, 2019.

    HUANG Daobin. Investigation on temperature effect and vehicle impact response of CFRP cables[D]. Changsha: Hunan University, 2019(in Chinese).
    [65] FANG Y, FANG Z, JIANG R, et al. Transverse Static and Low-Velocity Impact Behavior of CFRP Wires under Pretension[J]. 2019, 23(5): 04019041.
    [66] XIANG Y, FANG Z, FANG Y. Single and multiple impact behavior of CFRP cables under pretension[J]. Construction and Building Materials,2017,140:521-533. doi: 10.1016/j.conbuildmat.2017.02.112
  • 加载中
计量
  • 文章访问数:  63
  • HTML全文浏览量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 录用日期:  2022-06-04
  • 修回日期:  2022-05-15
  • 网络出版日期:  2022-06-21

目录

    /

    返回文章
    返回