留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiO2/凹凸棒土复合材料自修复超疏水涂层的制备与性能

鲁浈浈 蔡俊豪 唐超

鲁浈浈, 蔡俊豪, 唐超. SiO2/凹凸棒土复合材料自修复超疏水涂层的制备与性能[J]. 复合材料学报, 2022, 39(7): 3441-3450. doi: 10.13801/j.cnki.fhclxb.20210916.002
引用本文: 鲁浈浈, 蔡俊豪, 唐超. SiO2/凹凸棒土复合材料自修复超疏水涂层的制备与性能[J]. 复合材料学报, 2022, 39(7): 3441-3450. doi: 10.13801/j.cnki.fhclxb.20210916.002
LU Zhenzhen, CAI Junhao, TANG Chao. Preparation and properties of SiO2/attapulgite composite self-healing superhydrophobic coating[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3441-3450. doi: 10.13801/j.cnki.fhclxb.20210916.002
Citation: LU Zhenzhen, CAI Junhao, TANG Chao. Preparation and properties of SiO2/attapulgite composite self-healing superhydrophobic coating[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3441-3450. doi: 10.13801/j.cnki.fhclxb.20210916.002

SiO2/凹凸棒土复合材料自修复超疏水涂层的制备与性能

doi: 10.13801/j.cnki.fhclxb.20210916.002
基金项目: 重庆市技术创新与应用发展专项面上项目(cstc2019jscx-msxmX0209)
详细信息
    通讯作者:

    鲁浈浈,博士,教授,博士生导师,研究方向为超疏水表面制备 E-mail:luzz@foxmail.com

  • 中图分类号: TB34

Preparation and properties of SiO2/attapulgite composite self-healing superhydrophobic coating

  • 摘要: 在过去的几十年中,超疏水表面由于其特殊的性能而受到极为广泛的关注,但是在室外应用中,受环境中各种因素的影响,大多数超疏水表面很轻易会失去其超疏水性。采用简单的两步浸涂法制备得到一种表面坚固的可修复超疏水涂层。以聚硅氧烷与无水乙醇混合制得涂层底层;中性硅酮玻璃胶、纳米SiO2、微米级凹凸棒土(ATP)粉末以及聚硅氧烷共混制得涂层面层。利用扫描电子显微镜(SEM)、接触角测量仪、傅里叶变换红外光谱仪(FTIR)对涂层的微观形貌、润湿性、分子结构进行表征。确定了中性硅酮玻璃胶的最佳用量,考察了涂层的耐磨性能、自清洁性能以及机械磨损与酸碱环境下的自修复性能。结果表明:中性硅酮玻璃胶添加量在质量分数为1wt%时涂层疏水能力最佳,水接触角达到153.5°±1.5°。在50 g砝码(1.03 kPa)下经过360 cm的机械磨损,涂层仍具备140°以上的水接触角。并且涂层在受到一定程度的机械磨损或是酸碱破坏后,都可以通过高温加热实现涂层超疏水性能的修复,此外涂层还具备一定的耐水稳定性以及优异的自清洁能力。

     

  • 图  1  SiO2/凹凸棒土(ATP)超疏水涂层制备流程图: (a) 底层的制备;(b) SiO2/ATP超疏水溶液的制备;(c) 表层的制备

    Figure  1.  SiO2/attapulgite powder (ATP) superhydrophobic coating preparation process: (a) Preparation of the bottom layer; (b) Preparation of SiO2/ATP superhydrophobic solution; (c) Preparation of the surface layer

    图  2  不同中性硅酮玻璃胶含量下SiO2/ATP涂层的SEM图像,5 μm放大倍数下中性硅酮玻璃胶的含量:(a1) 0wt%;(b1) 1wt%;(c1) 2wt%;1 μm放大倍数下中性硅酮玻璃胶的含量:(a2) 0wt%;(b2) 1wt%;(c2) 2wt%

    Figure  2.  SEM images of different neutral silicone glass glue contents of SiO2/ATP coating: Under 5 μm magnification: (a1) 0wt%; (b1) 1wt%; (c1) 2wt%; Under 1 μm magnification: (a2) 0wt%; (b2) 1wt%; (c2) 2wt%

    图  3  SiO2/ATP超疏水涂层的自清洁效应

    Figure  3.  Self-cleaning effect of SiO2/ATP superhydrophobic coating

    图  4  (a) SiO2/ATP超疏水涂层水接触角随磨损周期的变化规律;(b) 不同表层构造的涂层水接触角随磨损周期的变化规律

    Figure  4.  (a) Change of water contact angle of SiO2/ATP superhydrophobic coating with abrasion cycles; (b) Variation of water contact angle of different coatings with wear cycles:

    1—SiO2; 2—SiO2 with attapulgite; 3—SiO2 with attapulgite and polysiloxane; 4—SiO2 with attapulgite, polysiloxane and silicone glue

    图  5  (a) 机械磨损下SiO2/ATP超疏水涂层的自修复规律;(b) SiO2/ATP超疏水涂层的FTIR图谱:初始涂层I;磨损后涂层II;加热修复后涂层III

    Figure  5.  (a) Self-healing law of SiO2/ATP suphyderrophobic coating under mechanical abrasion; (b) FTIR spectra of SiO2/ATP superhydrophobic coating: Initial coating I; Coating after abrasion II; Coating after heating repair III

    CA—Contact angle

    图  6  (a) 酸性环境下SiO2/ATP超疏水涂层的修复规律;(b) 碱性环境下SiO2/ATP超疏水涂层的修复规律

    Figure  6.  (a) Repair law of SiO2/ATP superhydrophobic coating in an acidic environment; (b) The repair law of SiO2/ATP superhydrophobic coating in an alkaline environment

    图  7  SiO2/ATP超疏水涂层自修复机制示意图

    Figure  7.  Schematic diagram of the self-healing mechanism of SiO2/ATP superhydrophobic coating

    图  8  (a) 水中浸泡时间对SiO2/ATP超疏水涂层接触角与滑动角的影响;(b) 5%NaCl水溶液浸泡时间对SiO2/ATP超疏水涂层接触角与滑动角的影响

    Figure  8.  (a) Effect of immersion time in water on the contact angle and sliding angle of SiO2/ATP superhydrophobic coating; (b) Influence of 5%NaCl solution immersion time on the contact angle and sliding angle of SiO2/ATP superhydrophobic coating

    表  1  不同质量分数中性硅酮胶对SiO2/ATP涂层水接触角的影响

    Table  1.   The influence of different mass fractions of neutral silicone glue on the water contact angle of SiO2/ATP coating

    Silicone glue content0wt%0.5wt%1wt%1.5wt%2wt%

    Water drop photo
    Contact angle/(°)147.99±0.5149.49±1.5153.49±1.5152.49±1.5151.99±1.5
    下载: 导出CSV
  • [1] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta,1997,202(1):1-8. doi: 10.1007/s004250050096
    [2] WANG F P, WANG L, WU H P, et al. Lotus-leaf-like SiO2 superhydrophobic bamboo surface based on soft lithography[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects,2017,520:834-840. doi: 10.1016/j.colsurfa.2017.02.043
    [3] SUN M H, LUO C X, XU L P, et al. Artificial lotus leaf by nanocasting[J]. Langmuir the ACS Journal of Surfaces and Colloids,2005,21(19):8978-8981. doi: 10.1021/la050316q
    [4] 吴忠灿, 刘亮亮, 唐伟, 等. 强稳定性超疏水F-DLC涂层的制备与性能研究[J]. 真空, 2019, 56(6):38-43.

    WU Zhongcan, LIU Liangliang, TANG Wei, et al. Preparation and performance of strong and stable superhydrophobic F-DLC coating[J]. Vacuum,2019,56(6):38-43(in Chinese).
    [5] XUE C H, LI Y R, ZHANG P, et al. Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization[J]. ACS Applied Materials and Interfaces,2014,6(13):10153-10161. doi: 10.1021/am501371b
    [6] 顾晓茵, 徐丽慧, 张旋宇, 等. 基于SiO2气凝胶的超疏水功能棉织物的制备及性能研究[J]. 化工新型材料, 2019, 47(2):260-263.

    GU Xiaoyin, XU Lihui, ZHANG Xuanyu, et al. Preparation and performance study of superhydrophobic functional cotton fabric based on SiO2 aerogel[J]. New Chemical Materials,2019,47(2):260-263(in Chinese).
    [7] 许瑞, 赵莉芝, 吴迪昊, 等. 溶胶-凝胶法制备仿猪笼草润滑表面[J]. 山东化工, 2019, 48(9):10-13.

    XU Rui, ZHAO Lizhi, WU Dihao, et al. Preparation of the lubricated surface of nepenthes imitation by sol-gel method[J]. Shandong Chemical Industry,2019,48(9):10-13(in Chinese).
    [8] LI K Q, ZENG X R, LI H Q, et al. Facile fabrication of superhydrophobic filtration fabric with honeycomb structures for the separation of water and oil[J]. Materials Letters,2014,120:255-258. doi: 10.1016/j.matlet.2014.01.105
    [9] EBERT D, BHUSHAN B. Transparent, superhydrophobic, and wear-resistant coatings on glass and polymer substrates using SiO2, ZnO, and ITO nanoparticles[J]. Langmuir the ACS Journal of Surfaces and Colloids,2012,28(31):11391-11399. doi: 10.1021/la301479c
    [10] SONG J L, LI Y X, XU W, et al. Inexpensive and non-fluorinated superhydrophobic concrete coating for anti-icing and anti-corrosion[J]. Journal of Colloid and Interface Science,2019,541:86-92. doi: 10.1016/j.jcis.2019.01.014
    [11] WANG F J, XIE T, OU J F, et al. Cement based superhydrophobic coating with excellent robustness and solar reflective ability[J]. Journal of Alloys and Compounds,2020,823:153702. doi: 10.1016/j.jallcom.2020.153702
    [12] ZHANG G W, LIN S D, WYMAN L, et al. Robust superamphiphobic coatings based on silica particles bearing bifunctional random copolymers[J]. ACS Applied Materials and Interfaces,2013,5(24):13466-13477. doi: 10.1021/am404317c
    [13] ZOU H, LIN S, TU Y, et al. Simple approach towards fabrication of highly durable and robust superhydrophobic cotton fabric from functional diblock copolymer[J]. Journal of Materials Chemistry A, 2013, 1: 11246-11260.
    [14] 梁伟欣, 张亚斌, 王奔, 等. 仿生超疏水性表面的生物应用[J]. 化学学报, 2012(23):2393-2403.

    LIANG Weixin, ZHANG Yabin, WANG Ben, et al. Biological application of biomimetic superhydrophobic surface[J]. Acta Chimica Sinica,2012(23):2393-2403(in Chinese).
    [15] VERHO T, BOWER C, ANDREW P, et al. Mechanically durable superhydrophobic surfaces[J]. Advanced Materials,2011,23(5):673-678. doi: 10.1002/adma.201003129
    [16] 周莹, 肖利吉, 姚丽, 等. 自修复型超疏水材料研究进展[J]. 材料导报, 2019, 033(007):1234-1242.

    ZHOU Ying, XIAO Liji, YAO Li, et al. Research progress of self-healing superhydrophobic materials[J]. Materials Review,2019,033(007):1234-1242(in Chinese).
    [17] 乔燕芳, 王利强, 刘晓伟. 自修复超疏水多功能协同作用涂层研究进展[J]. 涂料工业, 2018, 48(11):84-92.

    QIAO Yanfang, WANG Liqiang, LIU Xiaowei. Research progress of self-healing super-hydrophobic multifunctional synergistic coatings[J]. Paint Industry,2018,48(11):84-92(in Chinese).
    [18] CHEN K L, GU K, QIANG S Y, et al. Environmental stimuli-responsive self-repairing waterbased superhydrophobic coatings[J]. RSC Advances,2017,7(1):543-550. doi: 10.1039/C6RA25135H
    [19] SAHOO B N, NANDA S, KOZINSKI J A, et al. PDMS/camphor soot composite coating: Towards a self-healing and a self-cleaning superhydrophobic surface[J]. RSC Advances,2017,7(25):15027-15040. doi: 10.1039/C6RA28581C
    [20] PURETSKIY N, STOYCHEV G, SYNYTSKA A, et al. Surfaces with self-repairable ultrahydrophobicity based on selforganizing freely floating colloidal particles[J]. Langmuir,2012,28(8):3679-3682. doi: 10.1021/la204232g
    [21] 韦远怡, 陈炳耀, 彭小琴, 等. 硅酮胶在工业领域的应用研究[J]. 粘接, 2021(6):21-24. doi: 10.3969/j.issn.1001-5922.2021.06.006

    WEI Yuanyi, CHEN Bingyao, PENG Xiaoqin, et al. Application research of silicone glue in industrial field[J]. Adhesive,2021(6):21-24(in Chinese). doi: 10.3969/j.issn.1001-5922.2021.06.006
    [22] 许里杰, 鲁浈浈, 周建庭. 透明超疏水SiO2/硅酮胶复合涂层的制备及性能[J]. 精细化工, 2019, 36(7):1334-1339.

    XU Lijie, LU Zhenzhen, ZHOU Jianting. Preparation and properties of transparent superhydrophobic SiO2/silicone sealant composite coatings[J]. Fine Chemicals,2019,36(7):1334-1339(in Chinese).
    [23] 张莉, 张东, 但贵萍. 中性硅酮胶的性能研究和在氚防护中的应用[J]. 广州化工, 2010(2):115-116+124. doi: 10.3969/j.issn.1001-9677.2010.02.040

    ZHANG Li, ZHANG Dong, DAN Guiping. Research on the performance of neutral silicone rubber and its application in tritium protection[J]. Guangzhou Chemical Industry,2010(2):115-116+124(in Chinese). doi: 10.3969/j.issn.1001-9677.2010.02.040
    [24] 李小兵, 刘莹. 固体表面润湿性机理及模型[J]. 功能材料, 2007, 038(A10):3919-3924.

    LI Xiaobing, LIU Ying. Mechanism and model of solid surface wettability[J]. Functional Materials,2007,038(A10):3919-3924(in Chinese).
    [25] 方京男, 洪碧圆, 童威, 等. 基于CaCO3/SiO2复合粒子的超疏水表面制备[J]. 浙江大学学报(理学版), 2011, 38(2):189-193.

    FANG Jingnan, HONG Biyuan, TONG Wei, et al. Preparation of superhydrophobic surface based on CaCO3/SiO2 composite particles[J]. Journal of Zhejiang University (Science Edition),2011,38(2):189-193(in Chinese).
    [26] KE Q P, FU W Q, ZHANG L, et al. Fabrication of mechanically robust superhydrophobic surfaces based on silica micro-nanoparticles and polydimethylsiloxane[J]. Surface and Coatings Technology,2011,205(21):4910-4914.
    [27] YANG H, CHEN F. Superhydrophobic modification of silica with VTMO[J]. Journal of Synthetic Crystals,2015,44(9):2597-2605.
    [28] 余楠林. 有机-无机杂化耐摩擦超疏水涂层的制备与性能研究 [D]. 广州: 华南理工大学, 2019.

    YU Nanlin. Preparation and properties of organic-inorganic hybrid anti-friction superhydrophobic coating [D]. Guangzhou: South China University of Technology, 2019(in Chinese).
    [29] 化全县, 郝志远, 张凯, 等. 水热酸处理解离凹凸棒土晶束的研究[J]. 应用化工, 2020, 49(8):1904-1908. doi: 10.3969/j.issn.1671-3206.2020.08.008

    HUA Quanxian, HAO Zhiyuan, ZHANG Kai, et al. Hydrothermal acid treatment of dissociated attapulgite crystal bundles[J]. Applied Chemical Industry,2020,49(8):1904-1908(in Chinese). doi: 10.3969/j.issn.1671-3206.2020.08.008
    [30] LI D W, WANG H Y, LIU Y, et al. Large-scale fabrication of durable and robust super-hydrophobic spray coatings with excellent repairable and anti-corrosion performance[J]. Chemical Engineering Journal,2019,367:169-179. doi: 10.1016/j.cej.2019.02.093
    [31] 梁婷, 范振忠, 刘庆旺, 等. 超疏水/超双疏表面自修复方式的研究进展[J]. 化工进展, 2019, 38(7):3185-3193.

    LIANG Ting, FAN Zhenzhong, LIU Qingwang, et al. Research progress on self-repairing methods of super-hydrophobic/super-biphobic surfaces[J]. Progress in Chemical Industry,2019,38(7):3185-3193(in Chinese).
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  819
  • HTML全文浏览量:  571
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-06
  • 修回日期:  2021-08-18
  • 录用日期:  2021-08-27
  • 网络出版日期:  2021-09-16
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回