留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

兼具阻燃和导热性能的环氧树脂复合材料:石墨烯纳米片杂化三聚氰胺磷酸盐的作用

贾锡宁 王严 石慧 屈红强 郝建薇

贾锡宁, 王严, 石慧, 等. 兼具阻燃和导热性能的环氧树脂复合材料:石墨烯纳米片杂化三聚氰胺磷酸盐的作用[J]. 复合材料学报, 2023, 40(3): 1395-1405. doi: 10.13801/j.cnki.fhclxb.20220415.003
引用本文: 贾锡宁, 王严, 石慧, 等. 兼具阻燃和导热性能的环氧树脂复合材料:石墨烯纳米片杂化三聚氰胺磷酸盐的作用[J]. 复合材料学报, 2023, 40(3): 1395-1405. doi: 10.13801/j.cnki.fhclxb.20220415.003
JIA Xi'ning, WANG Yan, SHI Hui, et al. Epoxy resin composites with flame retardancy and thermal conductivity: Effect of graphene nanoplatelets hybridized with melamine phosphate[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1395-1405. doi: 10.13801/j.cnki.fhclxb.20220415.003
Citation: JIA Xi'ning, WANG Yan, SHI Hui, et al. Epoxy resin composites with flame retardancy and thermal conductivity: Effect of graphene nanoplatelets hybridized with melamine phosphate[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1395-1405. doi: 10.13801/j.cnki.fhclxb.20220415.003

兼具阻燃和导热性能的环氧树脂复合材料:石墨烯纳米片杂化三聚氰胺磷酸盐的作用

doi: 10.13801/j.cnki.fhclxb.20220415.003
基金项目: 国家自然科学基金(21474008);河北省京津冀协同创新建设项目(20541401 D)National Natural Science Foundation of China (21474008); Beijing-Tianjin-Hebei Collaborative Innovation Construction Project of Hebei Province (20541401 D)
详细信息
    通讯作者:

    屈红强,博士,教授,博士生导师,研究方向为石墨烯无机杂化阻燃剂的制备及应用 E-mail: hqqu@163.com

    郝建薇,博士,教授,博士生导师,研究方向为聚合物阻燃、绿色阻燃剂的制备及应用 E-mail: hjw@bit.edu.cn

  • 中图分类号: TB332;TQ323.5

Epoxy resin composites with flame retardancy and thermal conductivity: Effect of graphene nanoplatelets hybridized with melamine phosphate

  • 摘要: 研发制备低成本、少缺陷及高效率的石墨烯纳米片杂化阻燃剂对实现复合材料多功能性具有重要意义。以三聚氰胺为助剥离剂将微粉石墨(GRA)经机械球磨后与磷酸液相反应得到一种阻燃导热的石墨烯纳米片杂化三聚氰胺磷酸盐(GMP),在表征GMP形貌、结构、组成和热稳定性的基础上,研究了添加GMP环氧树脂(EP)复合材料的阻燃、热分解和导热性能。GMP的热失重分析结果表明:与三聚氰胺磷酸盐(MP)相比,初始分解温度提升了29.3℃,与环氧树脂的热分解温度更匹配,有助于提高阻燃效率。氧指数仪、锥形量热仪和导热性能研究表明,GMP添加30wt%时,EP复合材料的极限氧指数达到了30.4%,UL 94垂直燃烧达到V-0级,峰值热释放速率(PHRR)和峰值烟释放速率(PSPR)分别下降69%和74.0%;导热系数提升至2.10 W·m−1·K−1, 相对于EP提升了708%。这是由于GMP中石墨烯纳米片(GNPs)与MP的相互作用促进了EP形成了致密的膨胀炭层,有效提高了EP复合材料的阻燃性;随着GMP添加量的增加,GNPs和石墨微片传热通道的形成改善了EP复合材料的导热性。本文为解决EP复合材料因热沉积引发火灾危险的问题提供了兼具阻燃和导热性能的石墨烯纳米片杂化阻燃剂的设计和制备思路。

     

  • 图  1  石墨烯纳米片杂化三聚氰胺磷酸盐(GMP)制备路线示意图

    Figure  1.  Schematic diagram of preparation route of graphene nanoplatelets hybrid melamine phosphate (GMP)

    图  2  石墨烯纳米片(GNPs)的TEM ((a), (b))、AFM (c) 图像和截面分析 (d)

    Figure  2.  TEM ((a), (b)), AFM (c) images and section analysis (d) of the graphene nanosheets (GNPs)

    图  4  (a) 微粉石墨(GRA)和三聚氰胺(MN)-GNPs的Raman光谱;(b) GRA、MN、三聚氰胺磷酸盐(MP)、MN-GNPs和GMP的XRD图谱;(c) GRA、MP、MN-GNPs和GMP的FTIR图谱;MN-GNPs (d) 和GMP (e) 的XPS N1s图谱

    Figure  4.  (a) Raman spectra of powder graphite (GRA) and melamine (MN)-GNPs; (b) XRD patterns of GRA, MN, melamine phosphate (MP), MN-GNPs and GMP; (c) FTIR spectra of GRA, MP, MN-GNPS and GMP; XPS N1s spectra of MN-GNPs (d) and GMP (e)

    ID/IG—Intensity ratio of peak D to peak G

    图  3  MP (a) 和GMP (b) 的SEM图像

    Figure  3.  SEM images of MP (a) and GMP (b)

    图  5  氮气气氛下GRA、MP和GMP的TGA (a) 和DTG (b) 曲线

    Figure  5.  TGA (a) and DTG (b) curves of GRA, MP and GMP under N2 atmosphere

    图  6  EP、GMP/EP、MP/EP复合材料的热释放速率(HRR) (a)、总热释放速率(THR) (b)、烟释放速率(SPR) (c) 和总烟释放量(TSP) (d) 曲线

    Figure  6.  Heat release rate (HRR) (a), total heat release rate (THR) (b), smoke release rate (SPR) (c) and total smoke release (TSP) (d) curves of EP, GMP/EP, MP/EP composites

    图  7  EP (a) 和GMP20/EP (b) 残炭的数码照片和插入的SEM图像

    Figure  7.  Digital photos and inserted SEM images of EP (a) and GMP20/EP (b) char residues

    图  8  氮气气氛下EP、GMP/EP、MP/EP复合材料的TG (a) 和DTG (b) 曲线

    Figure  8.  TG (a) and DTG (b) curves of EP, GMP/EP, MP/EP composites under N2 atmosphere

    图  9  EP复合材料导热系数与阻燃剂添加量的关系

    Figure  9.  Relationship between thermal conductivity and flame retardants contents of EP composites

    图  10  相关报道的兼具阻燃导热复合材料导热系数和LOI的对比[6, 33-40]

    Figure  10.  Comparison of thermal conductivity and LOI of composites with flame retardant thermal conductivity was reported[6, 33-40]

    图  11  GMP30/EP ((a), (b), (h))、MP30/EP ((c), (d), (i))、MP-GRA30/EP ((e), (f), (j)) 和EP ((g), (k)) 复合材料断裂表面的SEM图像及导热机制

    Figure  11.  SEM images of fractured surfaces and heat conductive mechanism of GMP30/EP ((a), (b), (h)), MP30/EP ((c), (d), (i)), MP-GRA30/EP ((e), (f), (j)) and EP ((g), (k)) composites

    表  1  复合材料的配方及阻燃性能

    Table  1.   Formulation and flame retardancy of composites

    SampleE-51/wt%DDM/wt%MP/wt%GMP/wt%GRA/wt%P/wt%LOI/%EFFUL 94 (3 mm)
    EP 80.0 20.0 0 0 0 0 24.5 NR
    GMP20/EP 64.0 16.0 0 20.0 0 2.3 27.1 1.13 V-1
    GMP25/EP 60.0 15.0 0 25.0 0 2.9 28.4 1.34 V-1
    GMP30/EP 56.0 14.0 0 30.0 0 3.5 30.4 1.68 V-0
    MP20/EP 64.0 16.0 20.0 0 0 2.8 26.8 0.82 V-1
    MP25/EP 60.0 15.0 25.0 0 0 3.5 28.5 1.14 V-0
    MP30/EP 56.0 14.0 30.0 0 0 4.2 31.0 1.55 V-0
    MP-GRA20/EP 64.0 16.0 16.8 0 3.2 2.3 26.9 1.04 V-1
    MP-GRA25/EP 60.0 15.0 21.1 0 3.9 2.9 28.1 1.24 V-1
    MP-GRA30/EP 56.0 14.0 25.3 0 4.7 3.5 30.1 1.19 V-0
    Notes: EP—Epoxy resin; E-51—Epoxy monomer; DDM—4, 4-Diaminodiphenylmethane; MP—Melamine phosphate; GMP—Graphene nanoplatelets hybrid melamine phosphate; P—Phosphorus content in composite materials; LOI—Limit oxygen index; EFF—Flame retardancy efficiency and represents the LOI increment produced by each 1wt% of phosphorus in the composites; NR—No rating.
    下载: 导出CSV

    表  2  MN-GNPs、MP和GMP的表面元素组成

    Table  2.   Surface elemental compositions of MN-GNPs, MP and GMP

    SampleC/wt%N/wt%O/wt%P/wt%N/P
    MN-GNPs66.128.7 5.2
    MP27.631.925.515.12.1
    GMP59.218.414.2 8.32.2
    下载: 导出CSV

    表  4  EP、GMP/EP、MP/EP复合材料锥形量热仪测试数据

    Table  4.   Combustion parameters of EP, GMP/EP, MP/EP composites from cone test

    SampleTTI/sPHRR/(kW·m−2)THR/(MJ·m−2)PSPR/(m2·s−1)TSP/(m2·kg−1)CR/%
    EP 40 954.8 90.0 0.454 41.9 5.0
    GMP20/EP 37 339.5 70.2 0.144 26.1 23.6
    GMP30/EP 42 297.4 62.7 0.118 19.5 31.3
    MP20/EP 37 285.3 77.1 0.127 22.9 24.8
    MP30/EP 37 247.7 68.6 0.116 18.7 29.6
    Notes: TTI—Time to ignition; PHRR—Peak heat release rate; THR—Total heat release; PSPR—Peak smoke produce rate; TSP—Total smoke production; CR—Char residues.
    下载: 导出CSV

    表  3  复合材料在N2气氛下的TG和DTG数据

    Table  3.   TG and DTG data of composites materials under N2 atmosphere

    SampleT5%/℃ΔT5%/℃Tmax/℃CR700℃/%ΔCR700℃/%
    Exp.Cal.Exp.Cal.
    EP 368.1 382.9 20.1
    GMP 292.6 396.4 42.0
    MP 263.3 391.2 28.1
    GMP20/EP 328.5 353.0 −24.5 364.0 29.7 24.2 5.5
    GMP30/EP 337.8 345.4 −8.0 363.3 38.2 26.5 11.7
    MP20/EP 332.8 347.1 −14.3 363.8 30.7 21.5 9.2
    MP30/EP 329.5 336.7 −7.2 363.3 33.5 22.3 11.2
    Notes: Exp.—Test results; Cal.—Calculated results; T5%—Temperature with mass loss of 5wt%; Tmax—Maximum decomposition temperature; CR700℃—Char residues at 700℃; ΔT5%=T5%Exp.— T5%Cal.; ΔCR700℃=CR700℃Exp.CR700℃Cal.
    下载: 导出CSV

    表  5  复合材料的热扩散系数α、比热容Cp、密度ρ及导热系数λ

    Table  5.   Thermal diffusivity α, specific heat capacity Cp, density ρ and thermal conductivity λ of composites

    SampleGNPs/wt%GRA/wt%α/(mm2·s−1)Cp/( J·g−1·K−1)ρ/(g·cm−3)λ/(W·m−1·K−1)
    EP000.1631.4281.1030.26
    GMP30/EP≥0.5≤4.20.5882.5371.4092.10
    MP30/EP000.1972.4831.2740.62
    MP-GRA30/EP04.70.2531.6951.3050.56
    下载: 导出CSV
  • [1] ZHANG D L, LIU S N, CAI H W, et al. Enhanced thermal conductivity and dielectric properties in electrostatic self-assembly 3D pBN@nCNTs fillers loaded in epoxy resin composites[J]. Journal of Materiomics,2020,6(4):751-759. doi: 10.1016/j.jmat.2020.06.013
    [2] HUANG J, YANG W, ZHU J, et al. Silver nanoparticles decorated 3D reduced graphene oxides as hybrid filler for enhancing thermal conductivity of polystyrene compo-sites[J]. Composites Part A: Applied Science and Manufacturing,2019,123:79-85. doi: 10.1016/j.compositesa.2019.05.002
    [3] LI A, XU W, CHEN R, et al. Fabrication of zeolitic imidazolate frameworks on layered double hydroxide nanosheets to improve the fire safety of epoxy resin[J]. Composites Part A: Applied Science and Manufacturing,2018,112:558-571. doi: 10.1016/j.compositesa.2018.07.001
    [4] FANG F, RAN S, FANG Z, et al. Improved flame resistance and thermo-mechanical properties of epoxy resin nanocomposites from functionalized graphene oxide via self-assembly in water[J]. Composites Part B: Engineering,2019,165:406-416. doi: 10.1016/j.compositesb.2019.01.086
    [5] 李想, 陈润华, 魏毅, 等. 聚磷酸铵-三聚氰胺-三嗪成炭剂协同阻燃改性环氧树脂及玻璃纤维增强树脂复合材料[J]. 复合材料学报, 2021, 38(9):2796-2806.

    LI Xiang, CHEN Runhua, WEI Yi, et al. Flame retardant epoxy resins and glass fiber reinforced epoxy composites synergistically modified by ammonium polyphosphate, melamine and tria-zine carbon-forming agent[J]. Acta Materiae Compositae Sinica,2021,38(9):2796-2806(in Chinese).
    [6] FENG Y, LI X, ZHAO X, et al. Synergetic improvement in thermal conductivity and flame retardancy of epoxy/silver nanowires composites by incorporating "branch-like" flame retardant-functionalized graphene[J]. ACS Applied Materials & Interfaces,2018,10(25):21628-21641.
    [7] MESTRY S, MHASKE S T. Synthesis of epoxy resins using phosphorus-based precursors for flame-retardant coating[J]. Journal of Coatings Technology and Research,2019,16(3):807-818. doi: 10.1007/s11998-018-00157-3
    [8] 江平开, 陈金, 黄兴溢. 高导热绝缘聚合物纳米复合材料的研究现状[J]. 高电压技术, 2017, 43(9):2791-2799.

    JIANG Pingkai, CHEN Jin, HUANG Xingyi. Research status of thermally conductive but electrically insulating polymer nanocomposites[J]. High Voltage Engineering,2017,43(9):2791-2799(in Chinese).
    [9] LUO F, WU K, SHI J, et al. Green reduction of graphene oxide by polydopamine to a construct flexible film: Superior flame retardancy and high thermal conductivity[J]. Journal of Materials Chemistry A,2017,5(35):18542-18550. doi: 10.1039/C7TA04740A
    [10] SHAN L, YAN H, FANG Z, et al. Effect of graphene nanosheets on morphology, thermal stability and flame retardancy of epoxy resin[J]. Composites Science & Technology,2014,90(10):40-47.
    [11] LIN L, PENG H, LIU Z. Synthesis challenges for graphene industry[J]. Nature Materials,2019,18(6):520-524. doi: 10.1038/s41563-019-0341-4
    [12] JEON I Y, ZHANG S, ZHANG L, et al. Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: The electron spin effect[J]. Advanced Materials,2013,25(42):6138-6145. doi: 10.1002/adma.201302753
    [13] LEON V, QUINTANA M, ANTONIA HERRERO M, et al. Few-layer graphenes from ball-milling of graphite with melamine[J]. Chemical Communications,2011,47(39):10936-10938. doi: 10.1039/c1cc14595a
    [14] LEÓN V, RODRIGUEZ A M, PRIETO P, et al. Exfoliation of graphite with triazine derivatives under ball-milling conditions: Preparation of few-layer graphene via selective noncovalent interactions[J]. ACS Nano,2013,8(1):563-571.
    [15] CHA J, KIM J, RYU S, et al. Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets[J]. Composites Part B: Engineering,2019,162(4):283-288.
    [16] ZHANG A, LUAN J, ZHENG Y, et al. Effect of percolation on the electrical conductivity of amino molecules non-covalently coated multi-walled carbon nanotubes/epoxy composites[J]. Applied Surface Science,2012,258(22):8492-8497. doi: 10.1016/j.apsusc.2012.04.167
    [17] SHEN X, WANG Z, WU Y, et al. Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites[J]. Nano Letters,2016,16(6):3585-3593. doi: 10.1021/acs.nanolett.6b00722
    [18] KIM H S, JANG J, LEE H, et al. Thermal management in polymer composites: A review of physical and structural parameters[J]. Advanced Engineering Materials,2018,20(10):180-204.
    [19] ZHENG Z, YANG T, WANG B, et al. Microencapsulated melamine phosphate via solgel method and its application in halogen-free and intumescent flame-retarding acrylonitrile-butadiene-styrene copolymer[J]. Polymer International,2015,64(9):1275-1288. doi: 10.1002/pi.4919
    [20] 沈聃, 陈力, 徐英俊, 等. 二苯氧基磷酸三聚氰胺盐阻燃改性环氧树脂[J]. 化学研究与应用, 2017, 29(7):1050-1055. doi: 10.3969/j.issn.1004-1656.2017.07.023

    SHEN Dan, CHEN Li, XU Yingjun, et al. Flame-retardant epoxy resin modified with melamine diphenyl hydrogen phosphate[J]. Chemical Research and Application,2017,29(7):1050-1055(in Chinese). doi: 10.3969/j.issn.1004-1656.2017.07.023
    [21] QIN P, YI D, HAO J. Bi-layer molybdenum di-sulfide obtains from molybdenum disulfide-melamine cyanurate superlattice with a thermal shock[J]. Advanced Powder Technology,2021,32(5):1594-1601. doi: 10.1016/j.apt.2021.03.018
    [22] 姜鹏, 张胜, 谷晓昱, 等. 新型三聚氰胺盐类阻燃剂的合成及其在聚乳酸中的应用[J]. 化工新型材料, 2017, 45(5):197-199.

    JIANG Peng, ZHANG Sheng, GU Xiaoyu, et al. Synthesis of novel melamine salt flame retardant and its application in poly(lactic acid)[J]. New Chemical Materials,2017,45(5):197-199(in Chinese).
    [23] 苗瑞珍. 三聚氰胺磷酸盐/季戊四醇复配阻燃PE的RMD模拟[D]. 太原: 中北大学, 2016.

    MIAO Ruizhen. Molecular dynamics simulations for flame retarded polyethylene with melamine phosphate and pentaerythritol[D]. Taiyuan: North University of China, 2016(in Chinese).
    [24] 郭承鑫, 秦铭骏, 翟一霖, 等. 杂化三聚氰胺聚磷酸盐的合成及其在聚酰胺6中的阻燃应用[J]. 中国塑料, 2019, 33(8):44-48.

    GUO Chengxin, QIN Mingjun, ZHAI Yilin, et al. Synthesis of melamine polyphosphate hybrid and its application for flame retardancy of polyamide 6[J]. China Plastics,2019,33(8):44-48(in Chinese).
    [25] 中国石油和化学工业协会. 塑料用氧指数法测定燃烧行为第二部分: 室温实验: GB/T 2406.2—2009[S]. 北京: 中国标准出版社, 2010.

    China Petroleumand Chemical Industry Association. Plastics: Determination of burning behaviour by oxygen index Part 2: Guidance: GB/T 2406.2—2009[S]. Beijing: China Standards Press, 2010(in Chinese).
    [26] 中国国家标准化管理委员会. 塑料燃烧性能的测定水平法和垂直法: GB/T 2408—2008[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Plastics: Determination of burning characteristics: Horizontal and vertical test: GB/T 2408—2008[S]. Beijing: China Standards Press, 2009(in Chinese).
    [27] International Organization for Standardization. Reaction to fire tests-heat release, smoke production and mass loss rate-Part 1: Heat release rate (cone calorimeter method): ISO 5660-1[S]. Geneva: International Organization for Standardization, 2002.
    [28] LI L, HU H, DING S. Facile synthesis of ultrathin and perpendicular NiMn2O4 nanosheets on reduced graphene oxide as advanced electrodes for supercapacitors[J]. Chemical Journal of Chinese Universities,2018,5:1714-1720. doi: 10.1039/C8QI00121A
    [29] 徐少洪, 王正洲. 纳米三聚氰胺磷酸盐的合成及其在酚醛泡沫中的应用[J]. 材料研究学报, 2015, 29(5):377-382.

    XU Shaohong, WANG Zhengzhou. Preparation of nano melamine phosphate and its application in phenolic foam[J]. Chinese Journal of Materials Research,2015,29(5):377-382(in Chinese).
    [30] WEI D, LIU Y, WANG Y, et al. Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano Letters,2009,9(5):1752-1758. doi: 10.1021/nl803279t
    [31] FENG D, ZHOU Z, BO M. An investigation of the thermal degradation of melamine phosphonite by XPS and thermal analysis techniques[J]. Polymer Degradation & Stability,1995,50(1):65-70.
    [32] LEWIN M. Synergism and catalysis in flame retardancy of polymers[J]. Polymers for Advanced Technologies,2001,12(3):215-222.
    [33] HUANG T, ZENG X, YAO Y, et al. Boron nitride@graphene oxide hybrids for epoxy composites with enhanced thermal conductivity[J]. RSC Advances,2016,6(42):35847-35854. doi: 10.1039/C5RA27315C
    [34] TENG C, MA C M, CHIOU K, et al. Synergetic effect of hybrid boron nitride and multi-walled carbon nanotubes on the thermal conductivity of epoxy composites[J]. Materials Chemistry and Physics,2011,126(3):722-728. doi: 10.1016/j.matchemphys.2010.12.053
    [35] WANG F, SHI W, MAI Y, et al. Effect of thermal conductive fillers on the flame retardancy, thermal conductivity, and thermal behavior of flame-retardant and thermal conductive polyamide 6[J]. Materials,2019,12(24):4114. doi: 10.3390/ma12244114
    [36] FENG Y, HU J, XUE Y, et al. Simultaneous improvement in the flame resistance and thermal conductivity of epoxy/Al2O3 composites by incorporating polymeric flame retardant-functionalized graphene[J]. Journal of Materials Chemistry A,2017,5(26):13544-13556. doi: 10.1039/C7TA02934A
    [37] CHOI S, KIM J. Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers[J]. Composites Part B: Engineering,2013,51:140-147. doi: 10.1016/j.compositesb.2013.03.002
    [38] ZHANG S, TIAN Y, GU X, et al. Improving the flame resistance and thermal conductivity of ethylene-vinyl acetate composites by incorporating hexachlorocyclotriphosphazene-modified graphite and carbon nanotubes[J]. Polymer Composites,2018,39(S2):E891-E901. doi: 10.1002/pc.24304
    [39] GU J, LIANG C, ZHAO X, et al. Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities[J]. Compo-sites Science and Technology,2017,139:83-89. doi: 10.1016/j.compscitech.2016.12.015
    [40] SONG S H, PARK K, KIM B H, et al. Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization[J]. Advanced Materials,2013,25(5):732-737. doi: 10.1002/adma.201202736
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  957
  • HTML全文浏览量:  396
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-21
  • 修回日期:  2022-03-27
  • 录用日期:  2022-04-10
  • 网络出版日期:  2022-04-20
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回