留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

接枝细菌纤维素改性聚乳酸复合材料的制备与性能

陈倩 曾威 石伊康 吴星宇 王钊智

陈倩, 曾威, 石伊康, 等. 接枝细菌纤维素改性聚乳酸复合材料的制备与性能[J]. 复合材料学报, 2022, 40(0): 1-8
引用本文: 陈倩, 曾威, 石伊康, 等. 接枝细菌纤维素改性聚乳酸复合材料的制备与性能[J]. 复合材料学报, 2022, 40(0): 1-8
Qian CHEN, Wei ZENG, Yikang SHI, Xingyu Wu, Zhaozhi WANG. Preparation and properties of polylactic acid composite modified by bacterial cellulose[J]. Acta Materiae Compositae Sinica.
Citation: Qian CHEN, Wei ZENG, Yikang SHI, Xingyu Wu, Zhaozhi WANG. Preparation and properties of polylactic acid composite modified by bacterial cellulose[J]. Acta Materiae Compositae Sinica.

接枝细菌纤维素改性聚乳酸复合材料的制备与性能

基金项目: 国家自然科学基金 (51102179)
详细信息
    通讯作者:

    曾威,博士,副研究员,硕士生导师,研究方向为有机/无机杂化体系的制备与应用  E-mail: zwei@tust.edu.cn

  • 中图分类号: (TB332)

Preparation and properties of polylactic acid composite modified by bacterial cellulose

  • 摘要: 聚乳酸(PLA)作为新型的绿色友好材料有非常广阔的应用前景。为有效解决PLA韧性差、结晶速率低等问题,本文提出了以纤维素改性PLA的方法。首先以细菌纤维素(BC)为底物,使L-丙交酯(LLA)在其表面进行原位开环聚合,得到了BC-g-PLA接枝产物;然后将该接枝产物作为增韧剂添加到PLA中,采用溶液浇筑的方法制备得到复合薄膜材料。结果表明:溶液接枝法的反应效率比熔融接枝法更高,接枝率可达到76.60%;通过傅里叶变换红外光谱仪、核磁共振波谱仪与X射线衍射仪对接枝产物进行结构测试,证实了PLA成功接枝到BC表面;通过偏光显微镜观察复合薄膜材料晶体形貌发现BC-g-PLA作为异相成核剂,添加量为0.6wt%时,对球晶的均匀细化程度最高;通过力学性能测试发现,PLA薄膜增韧改性后断裂伸长率可提高175%,拉伸强度可提高22.7%;通过差示扫描量热仪测试复合薄膜材料的结晶性能,结晶度从未改性的2.53%提高到13.26%,结晶速率也有所增加。

     

  • 图  1  BC接枝聚乳酸(PLA)反应机制

    Figure  1.  Mechanism diagram of BC grafting Polylactic acid (PLA)

    图  2  接枝前后PLA和BC的红外光谱

    Figure  2.  IR spectra of PLA and BC before and after grafting

    图  3  接枝前后PLA和BC的核磁碳谱

    Figure  3.  NMR spectra of PLA and BC before and after grafting

    图  4  接枝前后PLA和BC的X射线衍射图谱

    Figure  4.  X-ray diffraction patterns of PLA and BC before and after grafting

    图  5  接枝前后BC的形貌图

    Figure  5.  Morphology of BC before and after grafting

    图  6  BC-g-PLA-2/PLA复合薄膜材料的POM图

    Figure  6.  POM diagram of BC-g-PLA-2/PLA composite film material

    图  7  BC含量对PLA断裂伸长率的影响

    Figure  7.  Effect of BC content on elongation at break of PLA

    图  8  BC含量对PLA拉伸强度的影响

    Figure  8.  Effect of BC content on tensile strength of PLA

    图  9  复合薄膜材料BC-g-PLA-2/PLA的DSC曲线:(a)二次升温;(b)降温

    Figure  9.  DSC curves of BC-g-PLA-2/PLA composite film material: (a) secondary heating process; (b) cooling process

    表  1  L-丙交酯(LLA)在细菌纤维素(BC)中原位聚合接枝率

    Table  1.   Graft ratio of L-propyl cross-ester (LLA) in-situ polymerization in bacterial cellulose (BC)

    SampleGrafting rate / %
    BC-g-PLA-130.90
    BC-g-PLA-276.60
    下载: 导出CSV

    表  2  BC-g-PLA-2/PLA复合材料DSC特征参数

    Table  2.   DSC characteristic parameter of BC-g-PLA-2/PLA composite

    SampleTg/℃Tm/℃Hm/(J·g-1)Xc/%
    Neat PLA58.2168.133.332.53
    0.2%59.0167.127.942.41
    0.4%59.3167.525.725.22
    0.6%59.5167.826.567.48
    0.8%59.6167.023.428.38
    1.0%59.6168.625.548.97
    1.5%59.6167.535.4911.57
    2.0%60.2168.037.1613.26
    Notes: Tg: glass transition temperature; Tm: melting temperature; Hm: molten Han; Xc: crystallinity
    下载: 导出CSV
  • [1] GHASEMI S; BEHROOZ R; GHASEMI I, et al. Development of nanocellulose-reinforced PLA nanocomposite by using maleated PLA (PLA-g-MA)[J]. Journal Of Thermoplastic Composite Materials,2018,31(8):1090-1101. doi: 10.1177/0892705717734600
    [2] GONCALVES C; GONCALVES I C; MAGALHAES F D, et al. Poly(lactic acid) Composites Containing Carbon-Based Nanomaterials: A Review[J]. Polymers,2017,9(7):37.
    [3] STANDAU T; ZHAO C J; CASTELLON S M, et al. Chemical Modification and Foam Processing of Polylactide (PLA)[J]. Polymers,2019,11(2):39.
    [4] ARRIETA M P; FORTUNATI E; DOMINICI F, et al. Multifunctional PLA-PHB/cellulose nanocrystal films: Processing, structural and thermal properties[J]. Carbohydrate Polymers,2014,107:16-24. doi: 10.1016/j.carbpol.2014.02.044
    [5] HWANG S W; LEE S B; LEE C K, et al. Grafting of maleic anhydride on poly(L-lactic acid). Effects on physical and mechanical properties[J]. Polymer Testing,2012,31(2):333-344. doi: 10.1016/j.polymertesting.2011.12.005
    [6] FUJISAWA S; ZHANG J; SAITO T, et al. Cellulose nanofibrils as templates for the design of poly(L-lactide)-nucleating surfaces[J]. Polymer,2014,55(13):2937-2942. doi: 10.1016/j.polymer.2014.04.019
    [7] WANG T; DRZAL L T Cellulose-Nanofiber-Reinforced Poly(lactic acid) Composites Prepared by a Water-Based Approach[J]. Acs Applied Materials & Interfaces, 2012, 4 (10): 5079-5085.
    [8] DOGU B; KAYNAK C Behavior of polylactide/microcrystalline cellulose biocomposites: effects of filler content and interfacial compatibilization[J]. Cellulose, 2016, 23 (1): 1-12.
    [9] ZHONG C Y Industrial-Scale Production and Applications of Bacterial Cellulose[J]. Frontiers In Bioengineering And Biotechnology, 2020, 8: 19.
    [10] REINIATI I; HRYMAK A N; MARGARITIS A Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals[J]. Critical Reviews In Biotechnology, 2017, 37 (4): 510-524.
    [11] LIN S P; CALVAR I L; CATCHMARK J M, et al. Biosynthesis, production and applications of bacterial cellulose[J]. Cellulose,2013,20(5):2191-2219. doi: 10.1007/s10570-013-9994-3
    [12] PARTE F G B; SANTOSO S P; CHOU C C, et al. Current progress on the production, modification, and applications of bacterial cellulose[J]. Critical Reviews In Biotechnology,2020,40(3):397-414. doi: 10.1080/07388551.2020.1713721
    [13] 张雯; 王学川; 余婷婷, et al. 细菌纤维素/聚乳酸复合膜制备及性能[J]. 精细化工, 2018, 35(10):7.

    ZHANG Wen; WANG Xue-chuan; YU Ting-ting, et. al. Preparation and Properties of Bacterial Cellulose/Poly Lactic Acid Composite Films[J]. FINE CHEMICALS,2018,35(10):7(in Chinese).
    [14] 李红月; 卢秀萍; 杨华, et al. 互穿网络聚乳酸/细菌纤维素生物复合材料的制备与性能[J]. 高分子材料科学与工程, 2016, 32 (1): 5.

    Li Hong-yue; Lu Xiu-ping; Yang Hua, et al. Preparation and Properties of Polylactic Acid /Bacterial Cellulose Bio-Composites with Interpenetrating Networks Structure[J]. Polymeric Materials Science and Engineering 2016, 32 (1): 5. (in Chinese)
    [15] LUDDEE M; PIVSA-ART S; SIRISANSANEEYAKUL S, et al. Particle Size of Ground Bacterial Cellulose Affecting Mechanical, Thermal, and Moisture Barrier Properties of PLA/BC Biocomposites[J]. Energy Procedia,2014,56(56):211-218.
    [16] GANß K; NECHWATAL A; FRANKENFELD K, et al. Difficulties in the Use of Ground Bacterial Cellulose (BC) as Reinforcement of Polylactid Acid (PLA) Using Melt-Mixing and Extrusion Technologies[J]. Open Journal of Composite Materials,2012,2(3):97-103. doi: 10.4236/ojcm.2012.23011
    [17] QU P; GAO Y; WU G F, et al. NANOCOMPOSITES OF POLY(LACTIC ACID) REINFORCED WITH CELLULOSE NANOFIBRILS[J]. Bioresources,2010,5(3):1811-1823.
    [18] CHUENSANGJUN C; KANOMATA K; KITAOKA T, et al. Surface-Modified Cellulose Nanofibers- graft -poly(lactic acid)s Made by Ring-Opening Polymerization of l -Lactide[J]. Journal of Polymers and the Environment,2019,27(4):847-861. doi: 10.1007/s10924-019-01398-y
    [19] ARIAS A; HEUZEY M C; HUNEAULT M A, et al. Enhanced dispersion of cellulose nanocrystals in melt-processed polylactide-based nanocomposites[J]. Cellulose,2015,22(1):483-498. doi: 10.1007/s10570-014-0476-z
    [20] AMBROSIO-MARTíN J; FABRA M J; LOPEZ-RUBIO A, et al. Melt polycondensation to improve the dispersion of bacterial cellulose into polylactide via melt compounding: enhanced barrier and mechanical properties[J]. Cellulose,2015,22(2):1201-1226. doi: 10.1007/s10570-014-0523-9
    [21] POONSUB; THREEPOPNATKUL; AMNARD, et al. Effect of bacterial cellulose on properties of poly(lactic acid)[J]. Materials Today Proceedings,2017,4(5):6605-6614. doi: 10.1016/j.matpr.2017.06.174
    [22] AVILA RAMIREZ J A; CERRUTTI P; BERNAL C, et al. Nanocomposites Based on Poly(lactic acid) and Bacterial Cellulose Acetylated by an α-Hydroxyacid Catalyzed Route[J]. Journal Of Polymers And the Environment,2019,27(3):510-520. doi: 10.1007/s10924-019-01367-5
    [23] MIAO C; HAMAD W Y In-situ polymerized cellulose nanocrystals (CNC)—poly(l-lactide) (PLLA) nanomaterials and applications in nanocomposite processing[J]. Carbohydrate Polymers, 2016, 153: 549-558.
    [24] PELTZER M; PEI A H; ZHOU Q, et al. Surface modification of cellulose nanocrystals by grafting with poly(lactic acid)[J]. Polymer International,2014,63(6):1056-1062. doi: 10.1002/pi.4610
    [25] GOFFIN A L; RAQUEZ J M; DUQUESNE E, et al. From Interfacial Ring-Opening Polymerization to Melt Processing of Cellulose Nanowhisker-Filled Polylactide-Based Nanocomposites[J]. Biomacromolecules,2011,12(7):2456-2465. doi: 10.1021/bm200581h
    [26] BRAUN B; DORGAN J R; KNAUSS D M Reactively compatibilized cellulosic polylactide microcomposites[J]. Journal of Polymers and the Environment, 2006, 14 (1): 49-58.
    [27] DUBEY S P; THAKUR V K; KRISHNASWAMY S, et al. Progress in environmental-friendly polymer nanocomposite material from PLA: Synthesis, processing and applications[J]. Vacuum,2017,146:655-663. doi: 10.1016/j.vacuum.2017.07.009
    [28] 吴景; 曾威; 邝美霞, et al. 细菌纤维素-ZnO/水性聚氨酯复合薄膜的制备与性能[J]. 复合材料学报, 2020, 37(12):3026-3034.

    WU Jing, ZENG Wei, KUANG Meixia, et al. Preparation and properties of bacterial cellulose-ZnO/waterborne polyurethane composite films[J]. Acta Materiae Compositae Sinica,2020,37(12):3026-3034(in Chinese).
    [29] 中国国家标准化管理委员会. 塑料拉伸性能的测定: GB/T 1040.1−2018[S]. 北京: 中国标准出版社, 2018.

    Standardization Administration of the People’s Repulic of China. Plastics—Determination of tensile properties: GB/T 1040.1−2018[S]. Beijing: China Standards Press, 2018(in Chinese).
    [30] 刘辉; 王肖杰; 张留学 丙交酯开环聚合法合成高分子量聚乳酸[J]. 广州化工, 2015, 43 (16): 5.

    LIU Hui; WANG Xiao- jie; ZHANG Liu- xue, Synthesis of High Molecular Weight Poly Lactic Acid by Lactide Ring- opening Polymerization[J]. Guangzhou Chemical Industry, 2015, 43 (16): 5. (in Chinese)
    [31] ZHU X F; ZHANG J; CHEN B C, et al. In Study on Synthesis and Thermal Properties of Polylactic Acid, // IOP[J]. Journal of Physics Conference Series. Shanghai:IOP Publishing Ltd,2018:550-556.
    [32] ECEIZA; ARANTXA; GONZALEZ, et al. Biodegradable composites with improved barrier properties and transparency from the impregnation of PLA to bacterial cellulose membranes[J]. Journal of Applied Polymer Science, 2016, 133 (28).
    [33] TOME L C; PINTO R; TROVATTI E, et al. Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly(lactic acid) through a simple approach[J]. Green Chemistry,2011,13(2):419-427. doi: 10.1039/c0gc00545b
  • 加载中
计量
  • 文章访问数:  105
  • HTML全文浏览量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-21
  • 录用日期:  2022-04-10
  • 修回日期:  2022-03-27
  • 网络出版日期:  2022-04-30

目录

    /

    返回文章
    返回