留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢桥面耐久型含氟丙烯酸酯-环氧树脂防水粘结层的制备与性能

夏慧芸 卢昌杰 杨浩田 张佃康 宋莉芳 牛艳辉

夏慧芸, 卢昌杰, 杨浩田, 等. 钢桥面耐久型含氟丙烯酸酯-环氧树脂防水粘结层的制备与性能[J]. 复合材料学报, 2023, 40(9): 5057-5069. doi: 10.13801/j.cnki.fhclxb.20221129.003
引用本文: 夏慧芸, 卢昌杰, 杨浩田, 等. 钢桥面耐久型含氟丙烯酸酯-环氧树脂防水粘结层的制备与性能[J]. 复合材料学报, 2023, 40(9): 5057-5069. doi: 10.13801/j.cnki.fhclxb.20221129.003
XIA Huiyun, LU Changjie, YANG Haotian, et al. Preparation and properties of durable fluorinated acrylate-epoxy waterproof adhesive layer for steel bridge deck[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5057-5069. doi: 10.13801/j.cnki.fhclxb.20221129.003
Citation: XIA Huiyun, LU Changjie, YANG Haotian, et al. Preparation and properties of durable fluorinated acrylate-epoxy waterproof adhesive layer for steel bridge deck[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5057-5069. doi: 10.13801/j.cnki.fhclxb.20221129.003

钢桥面耐久型含氟丙烯酸酯-环氧树脂防水粘结层的制备与性能

doi: 10.13801/j.cnki.fhclxb.20221129.003
基金项目: 国家自然科学基金(52278427);长安大学中央高校基本科研业务费专项(300102310301;300102311404)
详细信息
    通讯作者:

    夏慧芸,博士,副教授,硕士生导师,研究方向为交通功能材料 E-mail:xiahy@chd.edu.cn

  • 中图分类号: U444;TQ630.7;TB332

Preparation and properties of durable fluorinated acrylate-epoxy waterproof adhesive layer for steel bridge deck

Funds: National Natural Science Foundation of China (52278427); Special Funds for Basic Scientific Research of Central Colleges and Universities of Chang'an University (300102310301; 300102311404)
  • 摘要: 钢桥面铺装层由于防水粘结层失效导致其使用寿命远远低于桥梁结构的使用年限。为了延长钢桥面铺装层的使用寿命,改善层间粘结状况,制备了一种耐久型聚合物防水粘结层。利用自由基溶液聚合法合成了一系列含氟量不同的聚丙烯酸丁酯-甲基丙烯酸十二氟庚酯-甲基丙烯酸甲酯-苯乙烯嵌段共聚物,将上述共聚物与双酚A型环氧树脂E-51物理共混得到5种自分层防水涂料,再将其涂覆于钢桥面板表面静置干燥即可得到防水粘结层。通过傅里叶变换红外光谱、静态接触角测试、扫描电子显微镜研究了涂料在固化阶段的自分层行为,利用表面能理论对自分层行为进行了理论验证。最后研究了不同含氟量粘结层的高低温性能、力学性能、不透水性能、粘结强度及紫外老化耐久性。结果表明:当含氟量为20wt%时,其拉伸强度与断裂伸长率达到最大值,分别可达到7.04 MPa,128.9%;同时表现出最佳的粘结强度与紫外老化耐久性,综合性能达到最优。

     

  • 图  1  含氟丙烯酸嵌段聚合物合成方程式

    Figure  1.  Schematic of floriated acrylic block polymer

    AIBN—2,2-azobisisobutyronitrile

    图  2  自分层防水涂料制备过程

    Figure  2.  Preparation process of self-stratifying waterproof coatings

    FPA—A kind of resin

    图  3  含氟丙烯酸树脂的FTIR图谱

    Figure  3.  FTIR spectra of fluorinated acrylic acid block polymers

    图  4  防水涂料自分层界面示意图

    Figure  4.  Self-stratifying interface state of waterproof coatings

    图  5  含氟树脂FR1涂层、自分层涂层FR1-E51的上下表面及E51的FTIR图谱

    Figure  5.  FTIR spectra of coatings of FR1, surface of self-stratifying coatings FR1-E51, bottom of self-stratifying coatings FR1-E51 and coatings of E51

    图  6  自分层防水粘结层的SEM图像 (a) 和EDS能谱 (b)

    Figure  6.  SEM image (a) and EDS spectra (b) of self-stratifying waterproof coatings

    图  7  不同含氟量含氟丙烯酸酯-环氧树脂涂层的上下表面接触角

    Figure  7.  Water contact angle of surface and bottom of fluorinated acrylate-epoxy coating with different fluorine contents

    图  8  防水粘结层的TGA曲线

    Figure  8.  TGA curves of waterproof adhesive layer

    图  9  防水粘结层低温柔度测试:(a) 测试示意图;(b) 测试结果

    Figure  9.  Low temperature flexibility test of waterproof coatings: (a) Schematic diagram; (b) Test results

    F—Force

    图  10  防水粘结层的力学性能测试

    Figure  10.  Mechanical properties test of waterproof coatings

    图  11  不同含氟量的防水粘结层的拉拔强度

    Figure  11.  Pull out strength of waterproof adhesive layer with different fluorine contents

    图  12  老化前后防水粘结层的力学性能对比

    Figure  12.  Mechanical properties of self-stratifying coatings under UV aging

    表  1  实验试剂

    Table  1.   Experimental materials

    MaterialPurityManufacturer
    Methyl methacrylate (MMA)ARShandong Chuanghe New Materials CO., LTD.
    Butyl acrylate (BA)ARShandong Chuanghe New Materials CO., LTD.
    Styrene (St)ARTianjin Damao Chemical Reagent Factory
    AzodiisobutyronitrileARTianjin Damao Chemical Reagent Factory
    Ethyl acetate (EA)ARTianjin Damao Chemical Reagent Factory
    DiiodomethaneARShanghai Merck Chemical Reagent CO., LTD.
    XyleneARShandong Chuanghe New Materials CO., LTD.
    N-ButanolARShandong Chuanghe New Materials CO., LTD.
    Epoxy 51ARDanbao Epoxy Resin CO., LTD.
    Polyamide curing agentARMeidong Chemical Materials CO., LTD.
    Dodecafluoroheptyl methacrylate (DFHMA)ARHarbin Xuejia Fluorosilicone Chemical CO., LTD.
    下载: 导出CSV

    表  2  含氟量不同的含氟丙烯酸嵌段聚合物的命名

    Table  2.   Naming of fluorinated acrylic block polymers with different fluoride content

    Sample Fluorine
    content/wt%
    Mass ratio of
    FRx: Epoxy (E51)
    FR1 5
    FR2 10
    FR3 15
    FR4 20
    FR5 25
    FR1-E51 5 3∶7
    FR2-E51 10 3∶7
    FR3-E51 15 3∶7
    FR4-E51 20 3∶7
    FR5-E51 25 3∶7
    Note: x=1−5.
    下载: 导出CSV

    表  3  含氟丙烯酸树脂的物化性能

    Table  3.   Physicochemical properties of fluorinated resin

    Sample Appearance Viscosity/(mPa·s) Solid
    content/%
    Monomer conversion
    rate/%
    Shore hardness A
    FR1 Light yellow transparent viscous liquid 1690 56 85 58
    FR2 Light yellow transparent viscous liquid 1720 54 90 65
    FR3 Light yellow transparent viscous liquid 1726 55 93 75
    FR4 Light yellow transparent viscous liquid 1730 56 91 87
    FR5 Light yellow transparent viscous liquid 1735 58 94 92
    下载: 导出CSV

    表  4  防水涂料各个组分的接触角及其表面能

    Table  4.   Contact angle and surface energy of each component of waterproof coatings

    Sample Contact angle (H2O)/(°) Contact angle (CH2I2)/(°) γd/(mN·m−1) γp/(mN·m−1) γ/(mN·m−1)
    FR1 103 50 35.7 0.1 35.8
    FR2 106 45 24.7 0.2 24.9
    FR3 108 42 18.1 0.5 18.6
    FR4 107 37 18.5 0.6 19.1
    FR5 105 35 22.8 0.4 23.2
    E51 71 26 40.4 6.7 47.1
    Substrate 36 17 35.7 28.2 63.9
    Notes: γd—Dispersion component of surface energy; γp—Polarity component of surface energy; γ—Surface energy.
    下载: 导出CSV

    表  5  自分层防水涂料的界面能参数

    Table  5.   Interface energy parameters of self-stratifying coatings

    Sample ${\gamma _{{\text{12}}}}$ ${\gamma _{{\rm{s}}1}}$ ${\gamma _{{\rm{{{s}}2}}}}$ ${\gamma _{{\rm{s}}1}} - {\gamma _{{\rm{s}}2}} - {\gamma _{12}}$ ${\gamma _{\rm{s}}} - ({\gamma _{ {\rm{s} }2} } + {\gamma _{12} } + {\gamma _1})$ ${\gamma _{{\rm{s}}1}} - {\gamma _{\text{1}}} - {\gamma _{{\rm{s}}2}} + {\gamma _2}$
    FR1-E51 6.69 27.9 13.5 7.71 7.91 25.7
    FR2-E51 9.90 29.6 13.5 6.2 15.6 38.3
    FR3-E51 13.83 32.49 13.5 5.16 17.97 47.49
    FR4-E51 13.24 31.9 13.5 5.16 18.06 46.4
    FR5-E51 10.49 29.8 13.5 5.81 16.71 40.2
    Notes: γ12—Interface energy between components 1 and 2; γs1—Interface energy between components 1 and substrate; γs2—Interface energy between components 2 and substrate.
    下载: 导出CSV

    表  6  不同含氟量防水粘结层的高温稳定性

    Table  6.   High temperature stability test with different fluorine contents

    SampleTest result
    FR1-E51Without flowing and dripping
    FR2-E51Without flowing and dripping
    FR3-E51Without flowing and dripping
    FR4-E51Without flowing and dripping
    FR5-E51Flowing and dripping
    下载: 导出CSV

    表  7  防水粘结层不透水性测试结果

    Table  7.   Impermeability test of waterproof coatings

    SampleTest result
    FR1-E51Impermeable
    FR2-E51Impermeable
    FR3-E51Impermeable
    FR4-E51Impermeable
    FR5-E51Impermeable
    下载: 导出CSV
  • [1] 张勇, 高岩, 王石磊. 桥面铺装改造对正交异性钢桥面板受力性能的影响[J]. 桥梁建设, 2016, 46(4):55-60.

    ZHNAG Yong, GAO Yan, WANG Shilei. Effect of deck pavement retrofitting on mechanical properties of orthotropic steel deck[J]. Bridge Construction,2016,46(4):55-60(in Chinese).
    [2] YUAN D Y, CUI C, ZHANG Q H, et al. Influence of resin asphalt pavement on stress behaviors of double-side welded rib-to-deck joints in orthotropic steel decks[J]. Journal of Constructional Steel Research,2022,197:107491. doi: 10.1016/j.jcsr.2022.107491
    [3] 何志刚, 蔺鹏臻. UHPC组合桥面铺装层对铁路钢桥面板影响分析[J]. 桥梁建设, 2022, 52(4):103-109. doi: 10.3969/j.issn.1003-4722.2022.04.015

    HE Zhigang, LIN Pengzhen. Analysis of effect of UHPC composite deck pavement on mechanical performance of railway steel deck[J]. Bridge Construction,2022,52(4):103-109(in Chinese). doi: 10.3969/j.issn.1003-4722.2022.04.015
    [4] 林上顺. 正交异性钢桥面板典型疲劳细节变形与裂纹尖端应力分析[J]. 世界桥梁, 2020, 48(1):71-76. doi: 10.3969/j.issn.1671-7767.2020.01.014

    LIN Shangshun. Analysis of deformation of typical fatigue details and stresses at tip of cracks in orthotropic steel deck[J]. World Bridges,2020,48(1):71-76(in Chinese). doi: 10.3969/j.issn.1671-7767.2020.01.014
    [5] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2):1-97. doi: 10.3969/j.issn.1001-7372.2021.02.002

    Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2021[J]. China Journal of Highway and Transport,2021,34(2):1-97(in Chinese). doi: 10.3969/j.issn.1001-7372.2021.02.002
    [6] 伍贤智, 姜志刚, 王敏. 基于静动载试验的钢-UHPC组合桥面应用研究[J]. 桥梁建设, 2021, 51(5):67-73. doi: 10.3969/j.issn.1003-4722.2021.05.010

    WU Xianzhi, JIANG Zhigang, WANG Min. Study of application of steel-UHPC composite deck based on static and dynamic load tests[J]. Bridge Construction,2021,51(5):67-73(in Chinese). doi: 10.3969/j.issn.1003-4722.2021.05.010
    [7] 李书飞, 胡超峰, 祝闯, 等. 钢桥面铺装聚合物防水粘结层材料的研究与性能评价[J]. 新型建筑材料, 2019, 46(7):114-117. doi: 10.3969/j.issn.1001-702X.2019.07.029

    LI Shufei, HU Chaofeng, ZHU Chuang, et al. Development and performance evaluation of polymer waterproof bonding layer material for bridge deck pavement[J]. New Building Materials,2019,46(7):114-117(in Chinese). doi: 10.3969/j.issn.1001-702X.2019.07.029
    [8] QIU Y J, AN S K, RAHMAN A, et al. Evaluation and optimization of bridge deck waterproof bonding system using multi-objective grey target decision method[J]. Road Materials and Pavement Design,2020,21(7):1844-1858. doi: 10.1080/14680629.2019.1568288
    [9] 胡海波, 刘刚, 钱振东, 等. 武汉青山长江公路大桥混凝土桥面防水粘结层试验研究[J]. 桥梁建设, 2020, 50(S1):57-62.

    HU Haibo, LIU Gang, QIAN Zhendong, et al. Experimental study of waterproof bonding layer for concrete deck of Qingshan Changjiang River highway bridge in Wuhan[J]. Bridge Construction,2020,50(S1):57-62(in Chinese).
    [10] 张利东, 纵瑾瑜, 张羽彤, 等. 季冻区中小跨径刚柔复合钢桥面铺装用防水粘结层材料性能研究[J]. 化学与粘合, 2020, 42(4):275-279.

    ZHANG Lidong, ZONG Jinyu, ZHANG Yutong, et al. Research on the property of waterproof bonding layer material for the rigid and flexible composite steel bridge deck pavement with a small and medium span in seasonal frozen area[J]. Chemistry and Adhesion,2020,42(4):275-279(in Chinese).
    [11] 安乐, 赵文哲, 金宸宇. 工业用环氧树脂及其复合材料的闭环回收再制造[J]. 复合材料学报, 2023, 40(5): 2575-2586.

    AN Le, ZHAO Wenzhe, JIN Chenyu. Closed-loop recycling and re-manufacturing of engineering epoxy and its composites[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2575-2586(in Chinese).
    [12] XU Y, LV X P, MA C F, et al. Shear fatigue performance of epoxy resin waterproof adhesive layer on steel bridge deck pavement[J]. Frontiers in Materials,2021,7:618073. doi: 10.3389/fmats.2020.618073
    [13] FU H, WANG C H, WANG D T, et al. Durability evaluation of mechanical and bonding properties of polyurethane-modified waterborne epoxy resin for road[J/OL]. International Journal of Pavement Engineering, 2022: 1-14[2022-01-22].
    [14] 刘攀, 姚丹, 刘誉贵, 等. 新型钢桥面铺装环氧树脂防水粘结剂性能评价[J]. 中国建筑防水, 2019(5):44-48. doi: 10.15901/j.cnki.1007-497x.2019.05.012

    LIU Pan, YAO Dan, LIU Yugui, et al. Performance evaluation of epoxy resin waterproofing adhesive for new steel deck pavement[J]. China Building Waterproofing,2019(5):44-48(in Chinese). doi: 10.15901/j.cnki.1007-497x.2019.05.012
    [15] ZHAO C H, LI Y, YI Z J, et al. Experimental study on the interfacial bonding performance of a new steel bridge deck interface-bonding agent[J]. Advances in Materials Science and Engineering,2022,2022:1-9.
    [16] FUNKE W. Preparation and properties of paint films with special morphological structure[J]. Journal of the Oil and Colour Chemists' Association,1976(59):398-403.
    [17] ABBASIAN A, EKBATANI S, BAGHERZADEH N. On the stratification mechanism of self-stratifying epoxy-acrylic coatings[J]. Journal of Coatings Technology and Research,2021,18(2):559-568. doi: 10.1007/s11998-020-00424-2
    [18] MIRCHANDANI G, SAMANTA S, RAGHAVENDRA V B, et al. Self-stratifying amphiphobic coating based on functional polyacrylates[J]. Progress in Organic Coatings,2021,152:106106. doi: 10.1016/j.porgcoat.2020.106106
    [19] 刘桂花. 混凝土桥面长效防水粘结体系的研发与性能研究[D]. 重庆: 重庆交通大学, 2016.

    LIU Guihua. Concrete bridge deck long-term waterproof bonding system development and characteristic research[D]. Chongqing: Chongqing Jiaotong University, 2016(in Chinese).
    [20] BAE K Y, LIM D H, PARK J W, et al. Adhesion performance and surface characteristics of low surface energy psas fluorinated by UV polymerization[J]. Polymer Engineering and Science,2013,53(9):1968-1978. doi: 10.1002/pen.23437
    [21] 冷长松, 邓瑾妮, 殷绿, 等. 基于自分层效应可高温固化的含氟丙烯酸酯低表面能涂料的制备与性能[J]. 高分子材料科学与工程, 2015, 31(11):151-155. doi: 10.16865/j.cnki.1000-7555.2015.11.030

    LENG Changsong, DENG Jinni, YIN Lv, et al. Synthesis and characterization of high-temperature curable fluorinated polyacrylate/polyacrylate low-surface energy coating based on self-stratification[J]. Polymer Materials Science & Engineering,2015,31(11):151-155(in Chinese). doi: 10.16865/j.cnki.1000-7555.2015.11.030
    [22] HAN D C, KIM H, KWAK G. Benzotriazole-containing fluorinated acrylic polymer coatings with high thermal stability, low surface energy, high visible-light transparency, and UV-blocking performance[J]. Polymer Bulletin, 2022, 80(5): 5641-5654.
    [23] 陈瑶, 朱俊, 张蓉, 等. 分子结构对含氟丙烯酸酯嵌段聚合物/环氧树脂自分层涂料的影响[J]. 高分子材料科学与工程, 2021, 37(9):16-22. doi: 10.16865/j.cnki.1000-7555.2021.0217

    CHEN Yao, ZHU Jun, ZHANG Rong, et al. Influence of fluorine-containing acrylate block polymer on the stratification behavior of its self-stratifying coating with epoxy resin[J]. Polymer Materials Science & Engineering,2021,37(9):16-22(in Chinese). doi: 10.16865/j.cnki.1000-7555.2021.0217
    [24] American Society for Testing and Materials. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer: ASTM D4402-2006[S]. West Conshohocken: American Society for Testing Materials International, 2006.
    [25] 中国国家标准化管理委员会. 塑料和硬橡胶使用硬度计测定压痕硬度(邵氏硬度): GB/T 2411—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Plastics and ebonite determination of indentation hardness using a durometer (Shore hardness): GB/T 2411—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [26] 中国国家标准化管理委员会. 建筑防水涂料试验方法: GB/T 16777—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Test methods for sonstruction waterproof coatings: GB/T 16777—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [27] 中华人民共和国国家发展和改革委员会. 道桥用防水涂料: JC-T975—2005[S]. 北京: 中国标准出版社, 2005.

    National Development and Reform Commission of the People's Republic of China. Waterproofing coatings for concrete bridge and road surface: JC-T975—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [28] 中华人民共和国交通运输部. 公路钢桥面铺装设计与施工技术规范: JTG/T 3364-02—2019[S]. 北京: 人民交通出版社, 2019.

    Ministry of Transport of the People's Republic of China. Technical code for design and construction of highway steel deck pavement: JTG/T 3364-02—2019[S]. Beijing: People's Communications Press, 2019(in Chinese).
    [29] 刘思彤. 含氟丙烯酸酯/环氧树脂复合改性水性聚氨酯的制备及性能研究[D]. 长春: 长春工业大学, 2021.

    LIU Sitong. Preparation and properties of waterborne polyurethane modified by fluorinated acrylate/epoxy resin composite[D]. Changchun: Changchun University of Technology, 2021(in Chinese).
    [30] 朱丹. 含氟丙烯酸共聚物乳液/SiO2杂化用于制备超疏水涂层[D]. 天津: 天津理工大学, 2022.

    ZHU Dan. Preparation of superhydrophobic coatings by fluorinated acrylic copolymer emulsion/SiO2 hybridization[D]. Tianjin: Tianjin University of Technology, 2022(in Chinese).
    [31] 葛攀峰, 任强, 卞建华, 等. 含氟嵌段丙烯酸酯聚合物/环氧树脂自分层涂料的制备与性能[J]. 涂料工业, 2018, 48(4):1-8. doi: 10.12020/j.issn.0253-4312.2018.4.1

    GE Panfeng, REN Qiang, BIAN Jianhua, et al. Preparation and properties of fluorinated block acrylate polymer/epoxy self-stratifying coatings[J]. Paint & Coatings Industry,2018,48(4):1-8(in Chinese). doi: 10.12020/j.issn.0253-4312.2018.4.1
    [32] WANG Y Y, QIU F X, XU B B, et al. Preparation, mechanical properties and surface morphologies of waterborne fluorinated polyurethane-acrylate[J]. Progress in Organic Coatings,2013,76(5):876-883. doi: 10.1016/j.porgcoat.2013.02.003
    [33] KUCZYŃSKA H, LANGER E W, KAMIŃSKA-TARNAWSKA E, et al. Study of self-stratifying compositions[J]. Journal of Coatings Technology and Research,2009,6(3):345-352.
    [34] RINEHART S J, YUAN G C, DADMUN M D. Elucidating the kinetic and thermodynamic driving forces in polymer blend film self-stratification[J]. Macromolecules,2018,51(19):7836-7844. doi: 10.1021/acs.macromol.8b01397
    [35] ZAHEDI S, ZAAREI D, GHAFFARIAN S R. Self-stratifying coatings: A review[J]. Journal of Coatings Technology and Research,2018,15(1):1-12. doi: 10.1007/s11998-017-9996-4
    [36] BEAUGENDRE A, DEGOUTIN S, BELLAYER S, et al. Self-stratifying coatings: A review[J]. Progress in Organic Coatings,2017,110:210-241. doi: 10.1016/j.porgcoat.2017.03.011
    [37] LEMESLE C, BELLAYER S, DUQUESNE S, et al. Self-stratified bio-based coatings: Formulation and elucidation of critical parameters governing stratification[J]. Applied Surface Science,2021,536:147687. doi: 10.1016/j.apsusc.2020.147687
    [38] WU S H. Polar and nonpolar interactions in adhesion[J]. The Journal of Adhesion,1973,5(1):39-55. doi: 10.1080/00218467308078437
    [39] DENG Y J, ZHOU C, ZHANG Q X, et al. Structure and performance of waterborne polyurethane-acrylate composite emulsions for industrial coatings: Effect of preparation methods[J]. Colloid and Polymer Science,2020,298(2):139-149. doi: 10.1007/s00396-019-04583-6
    [40] 《中国公路学报》编辑部. 中国路面工程学术研究综述·2020[J]. 中国公路学报, 2020, 33(10):1-66. doi: 10.3969/j.issn.1001-7372.2020.10.001

    Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2020[J]. China Journal of Highway and Transport,2020,33(10):1-66(in Chinese). doi: 10.3969/j.issn.1001-7372.2020.10.001
    [41] 赵宇. 一种季冻区高适配性沥青桥面铺装受力分析及性能研究[D]. 长春: 吉林大学, 2021.

    ZHAO Yu. Force analysis and performance study of a kind of high-adaptability asphalt bridge deck pavement in seasonal frozen area[D]. Changchun: Jilin University, 2021(in Chinese).
    [42] WANG C, LI X R, DU B, et al. Preparation and properties of a novel waterborne fluorinated polyurethane-acrylate hybrid emulsion[J]. Colloid and Polymer Science,2014,292(3):579-587. doi: 10.1007/s00396-013-3107-6
    [43] HAYNES M A, COLERI E, OBAID I. Performance of waterproofing membranes to protect concrete bridge decks[J]. Transportation Research Record: Journal of the Transportation Research Board,2021,2675(9):1693-1706. doi: 10.1177/03611981211009527
    [44] 江国梅, 卢景威, 覃健耀, 等. 紫外光固化水性多元酸改性含氟环氧丙烯酸树脂的合成[J]. 电镀与涂饰, 2019, 38(12):609-615. doi: 10.19289/j.1004-227x.2019.12.009

    JIANG Guomei, LU Jingwei, QIN Jianyao, et al. Synthesis of ultraviolet-curable waterborne fluorinated epoxy acrylic resin modified by polybasic acid[J]. Electroplating and Finishing,2019,38(12):609-615(in Chinese). doi: 10.19289/j.1004-227x.2019.12.009
  • 加载中
图(12) / 表(7)
计量
  • 文章访问数:  698
  • HTML全文浏览量:  329
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-18
  • 修回日期:  2022-11-14
  • 录用日期:  2022-11-22
  • 网络出版日期:  2022-11-30
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回