留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有Kevlar短纤维界面增韧的碳纤维/铝蜂窝夹芯板冲击后压缩性能

石姗姗 吕超雨 吕航宇 程功 孙直

石姗姗, 吕超雨, 吕航宇, 等. 具有Kevlar短纤维界面增韧的碳纤维/铝蜂窝夹芯板冲击后压缩性能[J]. 复合材料学报, 2022, 40(0): 1-11
引用本文: 石姗姗, 吕超雨, 吕航宇, 等. 具有Kevlar短纤维界面增韧的碳纤维/铝蜂窝夹芯板冲击后压缩性能[J]. 复合材料学报, 2022, 40(0): 1-11
Shanshan SHI, Chaoyu LV, Hangyu LV, Gong CHENG, Zhi SUN. Compression after impact properties of carbon-fiber/aluminum-honeycomb sandwich panels with short-Kevlar-fiber toughening[J]. Acta Materiae Compositae Sinica.
Citation: Shanshan SHI, Chaoyu LV, Hangyu LV, Gong CHENG, Zhi SUN. Compression after impact properties of carbon-fiber/aluminum-honeycomb sandwich panels with short-Kevlar-fiber toughening[J]. Acta Materiae Compositae Sinica.

具有Kevlar短纤维界面增韧的碳纤维/铝蜂窝夹芯板冲击后压缩性能

基金项目: 国家自然科学基金(11872138;11702048);国家铁路集团有限公司科技研究开发项目(N2020J027);辽宁省教育厅科学研究项目(JDL2020021);大连市科技创新基金项目(2019RQ045;2019RQ069)
详细信息
    通讯作者:

    石姗姗,博士,副教授,硕士生导师,研究方向为复合材料夹芯结构性能研究、车体轻量化等 E-mail: shishanshandjtu@foxmail.com

  • 中图分类号: TB332

Compression after impact properties of carbon-fiber/aluminum-honeycomb sandwich panels with short-Kevlar-fiber toughening

  • 摘要: 碳纤维夹芯板受到冲击载荷后易发生分层损伤,在工程应用中严重影响结构安全。首先对碳纤维/铝蜂窝夹芯板界面进行Kevlar短纤维增韧设计;其次对比研究了Kevlar短纤维界面增韧及未增韧夹芯板的低速冲击行为和冲击后压缩行为,将其冲击后剩余压缩强度、能量吸收以及破坏模式进行对比;最后运用数字图像相关技术(DIC)获取增韧及未增韧试件在冲击后压缩过程中的应变云图。结果表明,低速冲击过程中,Kevlar短纤维增韧可以有效提高碳纤维/铝蜂窝夹芯板的冲击损伤阻抗,增韧试件的临界损伤阈值载荷明显高于未增韧试件;相比于未增韧试件,四种冲击能量下增韧试件的CAI值分别提高了2.68%、9.24%、4.65%、11.13%,能量吸收分别提高了69.09%、52.88%、55.03%、101.70%;对碳纤维/铝蜂窝夹芯板冲击后压缩过程中的DIC观测,进一步验证了芳纶短纤维对界面的增韧效果,并揭示了增韧界面对结构的增强机制。

     

  • 图  1  Kevlar短纤维薄膜制备过程

    Figure  1.  Preparation process of short-Kevlar-fiber tissue

    图  2  具有Kevlar短纤维增韧的碳纤维/铝蜂窝夹芯板

    Figure  2.  Carbon-fiber/aluminum-honeycomb sandwich panel with short-Kevlar-fiber toughening

    图  3  低速冲击实验平台

    Figure  3.  Low speed impact test platform

    图  4  非接触式光学测量系统

    Figure  4.  Non-contact optical measurement system

    图  5  不同冲击能量下Kevlar短纤维界面增韧与未增韧碳纤维/铝蜂窝夹芯板的冲击力-时间曲线

    Figure  5.  Impact load-time curves of carbon-fiber/aluminum-honeycomb sandwich panels with and without short-Kevlar-fiber toughening under different impact energies

    DTL—Damage threshold load

    图  6  Kevlar短纤维界面增韧与未增韧碳纤维/铝蜂窝夹芯板在不同冲击能量下的临界损伤阈值载荷值

    Figure  6.  Damage threshold load of carbon-fiber/aluminum-honeycomb sandwich panels with and without short-Kevlar-fiber toughening under different impact energies

    图  7  Kevlar短纤维界面增韧与未增韧碳纤维/铝蜂窝夹芯板在不同能量冲击后压缩过程中的载荷-位移曲线

    Figure  7.  Compressed load-displacement curves of carbon-fiber/aluminum-honeycomb sandwich panels with and without short-Kevlar-fiber toughening during compression after impact with different energies

    图  8  Kevlar短纤维界面增韧与未增韧碳纤维/铝蜂窝夹芯板的剩余强度与吸能对比

    Figure  8.  Comparison of residual strength and energy absorption of carbon-fiber/aluminum-honeycomb sandwich panels with and without short-Kevlar-fiber toughening

    图  9  碳纤维/铝蜂窝夹芯板CAI破坏模式及短纤维增韧示意图:(a)30J冲击能量下未增韧和增韧试件冲击后压缩破坏模态;(b)Kevlar短纤维界面增韧示意图[25]

    Figure  9.  Schematic diagram of CAI failure mode of carbon fiber/aluminum honeycomb sandwich panel and sketch of the toughening effects: (a) CAI failure mode of carbon fiber/aluminum honeycomb sandwich panel with and without toughening under the impact energy of 30J; (b) Sketch of the toughening effects with short Kevlar fibers[25]

    图  10  20J能量冲击后压缩过程中Kevlar短纤维界面增韧与未增韧碳纤维/铝蜂窝夹芯板在XY方向的工程应变曲线

    Figure  10.  Engineering strain curves of carbon-fiber/aluminum-honeycomb sandwich panels with and without short-Kevlar-fiber toughening in X and Y directions under the impact energy of 20J

    表  1  不同冲击能量下Kevlar短纤维界面增韧碳纤维/铝蜂窝夹芯板面板破坏形貌

    Table  1.   Failure morphologies of carbon-fiber/aluminum-honeycomb sandwich panel with short-Kevlar-fiber toughening under different impact energies

    Impact energy/J10203050
    Top surface
    Bottom surface
    下载: 导出CSV

    表  2  Kevlar短纤维界面增韧与未增韧碳纤维/铝蜂窝夹芯板在20J能量冲击后压缩过程中不同压缩应变对应的工程应变云图

    Table  2.   Engineering strain nephograms of carbon-fiber/aluminum-honeycomb sandwich panels with and without short-Kevlar-fiber toughening at different compression strain under the impact energy of 20J

    Engineering strainPlain specimenToughened specimen
    $ \varepsilon $ =0.002$ \varepsilon $ =0.005$ \varepsilon $ =0.008$ \varepsilon $ =0.002$ \varepsilon $ =0.005$ \varepsilon $ =0.008
    $ {\varepsilon }_{YY} $
    $ {\varepsilon }_{XX} $
    $ {\varepsilon }_{XY} $
    Notes: $ { \varepsilon } $–Average compression strain; $ {\varepsilon }_{YY} $–Engineering strain in Y direction; $ {\varepsilon }_{XX} $–Engineering strain in X direction; $ {\varepsilon }_{XY} $–shear strain.
    下载: 导出CSV
  • [1] DAS T K, GHOSH P, DAS N C. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review[J]. Advanced Composites and Hybrid Materials,2019,2(2):214-233. doi: 10.1007/s42114-018-0072-z
    [2] BIRMAN V, KARDOMATEAS GA. Review of current trends in research and applications of sandwich structures[J]. Composites part B:Engineering,2018,142:221-240. doi: 10.1016/j.compositesb.2018.01.027
    [3] SHIN K B, LEE J Y, CHO S H. An experimental study of low-velocity impact responses of sandwich panels for Korean low floor bus[J]. Composite Structures,2008,84(3):228-240. doi: 10.1016/j.compstruct.2007.08.002
    [4] HE W T, LU S J, YI K. et al. Residual flexural properties of CFRP sandwich structures with aluminum honeycomb cores after low-velocity impact[J]. International Journal of Mechanical Sciences,2019,161:105026.
    [5] YANG B, WANG Z Q, ZHOU L M, et al. Study on the low-velocity impact response and CAI behavior of foam-filled sandwich panels with hybrid facesheet[J]. Composite Structures,2015,132:1129-1140. doi: 10.1016/j.compstruct.2015.07.058
    [6] SUN X C, HALLETT S R. Failure mechanisms and damage evolution of laminated composites under compression after impact (CAI): Experimental and numerical study[J]. Composites Part A:Applied Science and Manufacturing,2018,104:41-59. doi: 10.1016/j.compositesa.2017.10.026
    [7] BHATTACHARYYA R, BASU P. Multiscale progressive damage analysis of CFRP composites using a mechanics based constitutive relation[J]. Composite Structures,2020,235:111759. doi: 10.1016/j.compstruct.2019.111759
    [8] ZHANG D H, JIANG D, FEI Q G, et al. Experimental and numerical investigation on indentation and energy absorption of a honeycomb sandwich panel under low-velocity impact[J]. Finite Elements in Analysis and Design,2016,117-118:21-30. doi: 10.1016/j.finel.2016.04.003
    [9] LIU J X, HE W T, XIE D, et al. The effect of impactor shape on the low-velocity impact behavior of hybrid corrugated core sandwich structures[J]. Composites Part B:Engineering,2017,111:315-331. doi: 10.1016/j.compositesb.2016.11.060
    [10] 齐佳旗, 段玥晨, 铁瑛, 等. 结构参数对CFRP蒙皮-铝蜂窝夹层板低速冲击性能的影响[J]. 复合材料学报, 2020, 37(6):1352-1363.

    QI J Q, DUAN Y C, TIE Y, et al. Effect of structural parameters on the low-velocity impact performance of aluminum honeycomb sandwich plate with CFRP face sheets[J]. Acta Materiae Compositae Sinica,2020,37(6):1352-1363(in Chinese).
    [11] WANG J, WAAS A M, WANG H. Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels[J]. Composite Structures,2013,96:298-311. doi: 10.1016/j.compstruct.2012.09.002
    [12] WU Y H, LIU Q, FU J, et al. Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels[J]. Composites Part B:Engineering,2017,121:122-133. doi: 10.1016/j.compositesb.2017.03.030
    [13] ZHANG X Y, XU F, ZHANG Y Y, et al. Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact[J]. Composite Structures,2020,236:111882. doi: 10.1016/j.compstruct.2020.111882
    [14] YANG X F, XI X L, PAN Q F, et al. In-plane dynamic crushing of a novel circular-celled honeycomb nested with petal-shaped mesostructure[J]. Composite Structures,2019,226:111219. doi: 10.1016/j.compstruct.2019.111219
    [15] 张亚文, 陈秉智, 石姗姗, 等. 格栅-蜂窝混式芯体夹芯结构的低速冲击性能[J]. 复合材料学报, 2022, 39(1):386-394.

    ZHANG Y W, CHEN B Z, SHI S S, et al. Low-velocity impact performance of grid-honeycomb hybrid core sandwich structure[J]. Acta Materiae Compositae Sinica,2022,39(1):386-394(in Chinese).
    [16] ZHANG Y W, YAN L L, ZHANG C, et al. Low-velocity impact response of tube-reinforced honeycomb sandwich structure[J]. Thin-Walled Structures,2021,158:107188. doi: 10.1016/j.tws.2020.107188
    [17] 仲越, 徐铭涛, 王萍, 等. 碳纤维-超高分子量聚乙烯纤维混杂增强环氧树脂复合材料低速冲击性能及失效机制[J]. 复合材料学报, 2021, 39:1-10.

    ZHONG Y, XU M T, WANG P, et al. Low-velocity impact properties and failure mechanism of carbon fiber-UHMWPE fiber hybrid reinforced epoxy resin composites[J]. Acta Materiae Compositae Sinica,2021,39:1-10(in Chinese).
    [18] JIANG H Y, CHENG F, HU Y S, et al. Micro-mechanics modeling of compressive strength and elastic modulus enhancements in unidirectional CFRP with aramid pulp micro/nano-fiber interlays[J]. Composites Science and Technology,2021,206(2):108664.
    [19] SUN Z, CHEN H J, SONG Z W, et al. Three-point bending properties of carbon fiber/honeycomb sandwich panels with short-fiber tissue and carbon-fiber belt interfacial toughening at different loading rate[J]. Composites Part A:Applied Science and Manufacturing,2021,143(5):106289.
    [20] 郑昊, 李岩, 涂昊昀. 短纤维插层碳纤维/环氧树脂复合材料层间性能研究[J]. 复合材料学报, 2022:39.

    ZHENG H, LI Y, TU H Y. Research on interlayer properties of short fiber intercalated carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2022:39(in Chinese).
    [21] YUAN B Y, YE M X, HU Y S, et al. Flexure and flexure-after-impact properties of carbon fibre composites interleaved with ultra-thin non-woven aramid fibre veils[J]. Composites Part A:Applied Science and Manufacturing,2020,131:1-10.
    [22] YUAN B Y, TAN B, HU Y S, et al. Improving impact resistance and residual compressive strength of carbon fibre composites using un-bonded non-woven short aramid fibre veil[J]. Composites Part A:Applied Science and Manufacturing,2019,121:105813.
    [23] SUN Z, HU X Z, CHEN H R. Effects of aramid-fibre toughening on interfacial fracture toughness of epoxy adhesive joint between carbon-fibre face sheet and aluminium substrate[J]. International Journal of Adhesion and Adhesives,2014,48:288-294. doi: 10.1016/j.ijadhadh.2013.09.023
    [24] SUN Z, SHI S S, HU X Z, et al. Adhesive joints between carbon fiber and aluminum foam reinforced by surface-treated aramid fibers[J]. Polymer Composites,2015,36(1):192-197. doi: 10.1002/pc.22929
    [25] SHI S S, SUN Z, HU X Z, et al. Carbon-fiber and aluminum-honeycomb sandwich composites with and without Kevlar-fiber interfacial toughening[J]. Composites Part A:Applied Science and Manufacturing,2014,67:102-110. doi: 10.1016/j.compositesa.2014.08.017
    [26] 刘浩洋, 吕超雨, 石姗姗, 等. 芳纶纤维增韧碳纤维增强环氧树脂复合材料-铝蜂窝夹芯结构界面性能和增韧机制[J]. 复合材料学报, 2022, 39(2):567-575.

    LIU H Y, LV C Y, SHI S S, et al. Interfacial toughening and toughening mechanism of aramid staple fiber to carbon fiber/aluminum honeycomb sandwich structure[J]. Acta Materiae Compositae Sinica,2022,39(2):567-575(in Chinese).
    [27] ASTM D7136/D7136M-2015 Standard test method for measuring the resistance of a fiber reinforced polymer matrix composite to a drop-weight impact event[S]. ASTM International, 2015.
    [28] SCHOEPPNER G A, ABRTE S. Delamination threshold loads for low velocity impact on composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2000, 31A(9): 903: 915.
    [29] 屈天骄, 郑锡涛, 范献银, 等. 复合材料层合板低速冲击损伤影响因素分析[J]. 航空材料学报, 2011, 31(12):81-86.

    QU T J, ZHENG X T, FAN X Y, et al. Exploration of several influence factors of low-velocity impact damage on composite laminates[J]. Journal of Aeronautical Materials,2011,31(12):81-86(in Chinese).
    [30] 管清宇, 冯剑飞, 夏品奇, 等. 复合材料层压板低速冲击行为及剩余拉伸强度[J]. 北京航空航天大学学报, 2021, 47(6):1220-1232.

    GUAN Q Y, FENG J D, XIA P Q, et al. Low velocity impact behavior and residual tensile strength of composite laminates[J]. Journal of Beijing University of Aeronautics and Astronautics,2021,47(6):1220-1232(in Chinese).
    [31] Sun Z, Jeyaraman J, Sun S Y, et al. Carbon-fiber aluminum-foam sandwich with short aramid-fiber interfacial toughening[J]. Composites Part A:Applied Science and Manufacturing,2012,43(11):2059-2064. doi: 10.1016/j.compositesa.2012.06.002
    [32] 石姗姗, 陈秉智, 陈浩然, 等. Kevlar短纤维增韧碳纤维/铝蜂窝夹芯板三点弯曲与面内压缩性能[J]. 复合材料学报, 2017, 34(9):1953-1959.

    SHI S S, CHEN B Z, CHEN H R, et al. Three-point bending and in-plane compression properties of carbon-fiber/aluminum honeycomb sandwich panels with short-Kevlar-fiber toughening[J]. Acta Materiae Compositae Sinica,2017,34(9):1953-1959(in Chinese).
  • 加载中
计量
  • 文章访问数:  115
  • HTML全文浏览量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-12
  • 录用日期:  2022-02-22
  • 修回日期:  2022-02-18
  • 网络出版日期:  2022-03-15

目录

    /

    返回文章
    返回