留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Kevlar纤维增强树脂基复合材料纳秒激光加工理论建模及试验

苏飞 李文毅 董国军 郑雷 陈冰

苏飞, 李文毅, 董国军, 等. Kevlar纤维增强树脂基复合材料纳秒激光加工理论建模及试验[J]. 复合材料学报, 2022, 39(8): 4139-4151. doi: 10.13801/j.cnki.fhclxb.20210909.011
引用本文: 苏飞, 李文毅, 董国军, 等. Kevlar纤维增强树脂基复合材料纳秒激光加工理论建模及试验[J]. 复合材料学报, 2022, 39(8): 4139-4151. doi: 10.13801/j.cnki.fhclxb.20210909.011
SU Fei, LI Wenyi, DONG Guojun, et al. Theoretical modeling and experimental study on nanosecond laser machining of Kevlar fiber reinforced plastics[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4139-4151. doi: 10.13801/j.cnki.fhclxb.20210909.011
Citation: SU Fei, LI Wenyi, DONG Guojun, et al. Theoretical modeling and experimental study on nanosecond laser machining of Kevlar fiber reinforced plastics[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4139-4151. doi: 10.13801/j.cnki.fhclxb.20210909.011

Kevlar纤维增强树脂基复合材料纳秒激光加工理论建模及试验

doi: 10.13801/j.cnki.fhclxb.20210909.011
基金项目: 国家自然科学基金(52175400;51805164;52075127);湖南省自然科学基金(2021JJ30263);江苏省自然科学基金(BK20201474);湖南省教育厅资助科研项目(18A182)
详细信息
    通讯作者:

    苏飞,博士,副教授,硕士生导师,研究方向为先进制造工艺与装备 E-mail: sfeihe@163.com

    董国军,博士,副教授,硕士生导师,研究方向为超声辅助切削磨削、超精密加工 E-mail: dongguojun@hit.edu.cn

  • 中图分类号: TQ327;V258+.3

Theoretical modeling and experimental study on nanosecond laser machining of Kevlar fiber reinforced plastics

  • 摘要: 纳秒激光加工在纤维增强树脂基复合材料的加工中应用广泛,但在对温度较敏感的Kevlar纤维增强树脂基复合材料(KFRP)的激光加工中,极易产生不可控的热损伤。针对KFRP的纳秒激光切割,分析激光加工过程中的温度演变过程,根据激光加工烧蚀阈值理论,分析KFRP的烧蚀阈值及烧蚀机制,并基于热传导中的能量守恒定律、质量守恒及动量守恒,分别建立Kevlar纤维和树脂基体热影响区的损伤预测模型。结果表明,KFRP激光加工热影响区存在显著差异,可以通过切削温度变化规律明显区分激光加工不同损伤区域;Kevlar纤维的烧蚀阈值为0.01 J·cm−2,环氧树脂基体的烧蚀阈值为0.005 J·cm−2;切缝宽度、切缝深度、炭化区宽度的理论预测模型与实验结果基本吻合,激光加工工艺参数对热影响区影响显著,其中,激光功率对切缝宽度的影响最大,扫描速度对切缝深度、炭化区宽度的影响最显著,但脉冲宽度和重复频率对热影响区影响较小。

     

  • 图  1  热阻简化模型

    Figure  1.  Thermal resistance simplified model

    K1—Thermal conductivity of Kevlar fiber; K2—Thermal conductivity of epoxy resin

    图  2  KFRP激光加工试验装置

    Figure  2.  KFRP laser processing experimental setup

    图  3  测温点位置

    Figure  3.  Position of temperature measuring point

    图  4  激光加工评价

    Figure  4.  Evaluation of laser machining

    d0—Kerf depth; d1—Carbonization depth; Wk—Kerf width; Wk1—Carbonization width; Wk2—Melting zone width

    图  5  KFRP激光加工微观形貌

    Figure  5.  Laser micromorphology of KFRP

    图  6  KFRP侧面水平方向温度变化

    Figure  6.  Temperature changes in horizontal direction of the side of KFRP

    图  7  KFRP侧面垂直方向温度变化

    Figure  7.  Temperature change in vertical direction of the side of KFRP

    图  8  激光工艺参数对KFRP最高温度的影响

    Figure  8.  Influences of laser parameters on maximum temperature of KFRP

    图  9  不同功率下KFRP激光烧蚀表面形貌

    Figure  9.  Laser ablation morphology of KFRP under different powers

    图  10  激光功率对数与KFRP烧蚀宽度平方的拟合关系

    Figure  10.  Fitting relationship between laser power logarithm and ablation width square of KFRP

    图  11  KFRP热导率对热影响区的影响

    Figure  11.  Influence of thermal conductivity of KFRP on heat affected zone

    图  12  KFRP烧蚀区理论与实验结果

    Figure  12.  Theoretical and experimental results of ablation zone of KFRP

    图  13  重复频率对KFRP热影响区的影响

    Figure  13.  Influence of repetition frequency on heat affected zone of KFRP

    表  1  Kevlar纤维增强树脂基复合材料(KFRP)的特征参数[10, 26]

    Table  1.   Performance parameters of Kevlar fiber reinforced plastics (KFRP)[10, 26]

    Performance parameterValue
    Density of Kevlar fiber ρ1/(g·mm−3) 1.44×10−6
    Density of epoxy matrix ρ2/(g·mm−3) 1.20×10−6
    Specific heat capacity of Kevlar fiber
    C1/(J·kg−1·℃−1)
    1398.46
    Specific heat capacity of epoxy resin
    C2/(J·kg−1·℃−1)
    1884.00
    Environment temperature T0/℃ 25
    Melting temperature of epoxy resin Tm/℃ 90
    Vaporizer temperature of epoxy resin T2/℃ 425
    Carbonization temperature of Kevlar fiber T1/℃ 427
    Thermal conductivity of Kevlar fiber
    K1/(W·mm−1·℃−1)
    1.57×10−3
    Thermal conductivity of epoxy resin
    K2/(W·mm−1·℃−1)
    2.00×10−4
    Energy absorption rate A 0.6
    Transition latent heat of epoxy resin Qv2/(J·kg−1) 1×106
    Coefficient of overheating in melting ημ 0.01
    Density of assisted gas ρg/(kg·m−3) 2.786
    Molecular diameter of assisted gas σ/mm 3.75×10−7
    Pressure of assisted gas Pg/Pa 2.98×105
    Pressure drop coefficient F 0.5
    下载: 导出CSV

    表  2  激光加工工艺参数

    Table  2.   Laser machining process parameters

    NumberP/WV/(mm·s−1)f/kHzτ/ns
    1 10 3 200 20
    2 20 3 200 20
    3 30 3 200 20
    4 40 3 200 20
    5 50 3 200 20
    6 30 1 200 20
    7 30 2 200 20
    8 30 3 200 20
    9 30 4 200 20
    10 30 5 200 20
    11 30 3 350 20
    12 30 3 500 20
    13 30 3 650 20
    14 30 3 200 30
    15 30 3 200 60
    16 30 3 200 120
    Notes: P—Laser power; V—Scanning speed; f—Repetition frequency; τ—Pulse width.
    下载: 导出CSV
  • [1] DELLERBA M, GALANTUNCCI L M, MIGLIETTA S. An experimental study on laser drilling and cutting of composite materials for the aerospace industry using excimer and CO2 sources[J]. Composites Manufacturing,1992,3(1):14-19. doi: 10.1016/0956-7143(92)90178-W
    [2] 张开虎, 于洋, 张夏明, 等. 纤维增强树脂基复合材料激光切割热影响探析[J]. 导航与控制, 2019, 18(5):60-83.

    ZHANG K H, YU Y, ZHANG X M, et al. Laser cutting induced heat affected zone in fiber reinforced polymer: A comparative analysis[J]. Navigation and Control,2019,18(5):60-83(in Chinese).
    [3] 王贵兵, 刘仓理. 凯芙拉环氧复合材料烧蚀阈值实验研究[J]. 激光技术, 2003, 27(5):457-459. doi: 10.3969/j.issn.1001-3806.2003.05.027

    WANG G B, LIU C L. Experimental research of the ablation threshold of Kevlar/epoxy[J]. Laser Technology,2003,27(5):457-459(in Chinese). doi: 10.3969/j.issn.1001-3806.2003.05.027
    [4] 路明雨, 张明, 张开虎, 等. 高模量碳纤维增强树脂基复合材料的皮秒激光加工阈值特性[J]. 复合材料学报, 2021, 38(11):3601-3609.

    LU M Y, ZHANG M, ZHANG K H, et al. Threshold properties of high modulus carbon fiber reinforced plastic composite with picosecond laser processing[J]. Acta Materiae Compositae Sinica,2021,38(11):3601-3609(in Chinese).
    [5] 庞思勤, 刘伟成. 激光加工高性能复合材料的工艺与机理研究[J]. 兵工学报, 1992, 4:84-91.

    PANG S Q, LIU W C. A study on the process and mecha-nisms of laser machining of high-performance composites[J]. Acta Armamentarii,1992,4:84-91(in Chinese).
    [6] 张永强, 王贵兵, 唐小松, 等. 两种纤维增强复合材料连续激光烧蚀阈值测量及吸收特性分析[J]. 强激光与粒子束, 2009, 21(2):199-202.

    ZHANG Y Q, WANG G B, TANG X S, et al. Ablation threshold measurement and absorption characteristic analysis of two fiber reinforced composites irradiated by CW laser[J]. High Power Laser and Particle Beams,2009,21(2):199-202(in Chinese).
    [7] 王贵兵, 罗飞, 刘仓理, 等. 芳纶纤维复合材料激光烧蚀损伤形貌研究[J]. 激光技术, 2006, 30(2):168-169. doi: 10.3969/j.issn.1001-3806.2006.02.002

    WANG G B, LUO F, LIU C L, et al. The research of the ablation morphology of the composite reinforced by polyaryl amidde fibers irradiated by laser[J]. Laser Technology,2006,30(2):168-169(in Chinese). doi: 10.3969/j.issn.1001-3806.2006.02.002
    [8] LEONE C, PAPA I I, TAGLIAFERRI F, et al. Investigation of CFRP laser milling using a 30 W Q-switched Yb: YAG fiber laser: Effect of process parameters on removal mecha-nisms and HAZ formation[J]. Composites Part A: Applied Science and Manufacturing,2013,55:129-142.
    [9] AL-SULAIMAN F, YILBAS B S, KARAKAS F C, et al. Laser hole cutting in Kevlar: Modeling and quality assessment[J]. The International Journal of Advanced Manufacturing Technology,2008,38:1125-1136. doi: 10.1007/s00170-007-1167-9
    [10] AL-SULAIMAN F, YILBAS B S, AHSAN M, et al. CO2 laser cutting Kevlar laminate: Influence of assisting gas pressure[J]. International Journal of Advanced Manufacturing Technology,2009,45:62-70. doi: 10.1007/s00170-009-1945-7
    [11] CHEN L M, LI M J, Yang X J, et al. Thermal defect characterization and heat conduction modeling during fiber laser cutting carbon fiber reinforced polymer laminates[J]. Archives of Civil and Mechanical Engineering,2020,20(61):1-14.
    [12] GAUTAN G D, DHANANIJAY R, MISHRA. Evaluation of geometrical quality characteristics in pulsed Nd: YAG laser cutting of Kevlar-29/basalt fiber reinforced hybrid compo-site using grey relational analysis based on genetic algorithm[J]. FME Transactions,2019,47:560-575. doi: 10.5937/fmet1903560G
    [13] GAUTAN G D, PANDEY A K. Teaching learning algorithm based optimization of kerf deviations in pulsed Nd: YAG laser cutting of Kevlar-29 composite laminates[J]. Infrared Physics & Technology,2018,89:203-217.
    [14] 熊厚. 纳秒激光薄铝板精密打孔研究[D]. 武汉: 湖北工业大学, 2016.

    XIONG H. Nanosecond laser drilling of thin aluminum sheets[D]. Wuhan: Hubei University of Technology, 2016(in Chinese).
    [15] 李平雪, 辛承聪, 高健, 等. 皮秒激光加工研究进展与展望[J]. 激光与红外, 2008, 48(10):1196-1203.

    LI P X, XIN C C, GAO J, et al. Research progress and development of picosecond laser processing[J]. Laser & Infrared,2008,48(10):1196-1203(in Chinese).
    [16] PECHOLT B, VENDAN M, DONG Y Y. Ultrafast laser micromachining of 3C-SiC thin films for MEMS device fabrication[J]. International Journal of Advanced Manufacturing,2008(39):239-250.
    [17] 焦浩文, 陈冰, 罗良, 等. 纳秒激光加工2.5维Cf/SiC复合材料的烧蚀孔洞特征[J]. 中国机械工程, 2020, 31(8):983-990. doi: 10.3969/j.issn.1004-132X.2020.08.014

    JIAO H W, CHEN B, LUO L, et al. Ablation hole characteris-tic of 2.5-dimensional Cf/SiC composites processed by nanosecond laser[J]. China Mechanical Engineering,2020,31(8):983-990(in Chinese). doi: 10.3969/j.issn.1004-132X.2020.08.014
    [18] ZHENG B, JIANG G, WANG W, et al. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse lase[J]. AIP Advances,2014,4(3):1-9.
    [19] 李晓溪, 贾天卿, 冯东海, 等. 超短脉冲激光照射下氧化铝的烧蚀机理[J]. 物理学报, 2004, 53(7):2154-2158. doi: 10.3321/j.issn:1000-3290.2004.07.025

    LI X X, JIA T Q, FENG D H, et al. The mechanism of ablation of sapphire by an ultrashort pulse laser[J]. Acta Phy-sica Sinica,2004,53(7):2154-2158(in Chinese). doi: 10.3321/j.issn:1000-3290.2004.07.025
    [20] 梁建超. 飞秒激光与材料相互作用的能量建模及加工形貌研究[D]. 天津: 天津大学, 2018.

    LIANG J C. Study on energy for the interaction between femtosecond laser and material and processing and morphuology[D]. Tianjin: Tianjin University, 2018(in Chinese).
    [21] 王昊君. 纳秒激光抛光钛合金Ti6Al4V作用机理及实验研究[D]. 武汉: 湖北工业大学, 2020.

    WANG H J. Experimental study on nanosecond laser polishing of Ti6AI4V alloy[D]. Wuhan: Hubei University of Technology, 2020(in Chinese).
    [22] KAR A, SCOTT J E, LATHAM W P. Theoretical and experimental studies of thick-section cutting with a chemical oxygen-iodine laser (COIL)[J]. Journal of Laser Applications,1996,8:125-133. doi: 10.2351/1.4745413
    [23] KAR A, ROTHENFLUE J A, LATHAM W P. Scaling laws for thick-section cutting with a chemical oxygen-iodine laser[J]. Journal of Laser Applications,1997,9(6):279. doi: 10.2351/1.4745470
    [24] GEORGE S, SPRINGER. Thermal conductivities of unidirectional materials[J]. Materials,1967,1:166-173.
    [25] UHLAMNN E, SPUR G, HOCHENG H, et al. The extent of laser-induced thermal damage of UD and crossply compo-site laminates[J]. International Journal of Machine Tools & Manufacture,1999,39:639-650.
    [26] 赵明生. 机械工程手册 [M]. 北京: 机械工业出版社, 1996.

    ZHAO M S. Mechanical engineering handbook[M]. Beijing: China Machine Press, 1996(in Chinese).
    [27] 杨剑, 张瑞, 赵煜, 等. 皮秒激光切割AFRP复合材料实验研究[J]. 复合材料学报, 2011, 39(1):147-157.

    YANG J, ZHANG R, ZHAO Y, et al. Experimental study on picosecond laser cutting AFRP composites[J]. Acta Materae Compositae Sinica,2011,39(1):147-157(in Chinese).
    [28] YILBAS B S, AL-SULAIMAN F, KARAKAS C, et al. Laser cutting of multilayered Kevlar plates[J]. Journal of Materials Engineering and Performance,2007,16:663-671. doi: 10.1007/s11665-007-9107-2
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  766
  • HTML全文浏览量:  380
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 修回日期:  2021-08-19
  • 录用日期:  2021-08-27
  • 网络出版日期:  2021-09-09
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回