Research progress of superhydrophobic flexible strain sensors in human motion monitoring
-
摘要:
目的 柔性应变传感器是一种将外界应力变化转变为电信号的设备,它克服了传统刚性传感器硬度大、人体适应性差等缺点,作为一种可穿戴设备在人体运动监测领域有很大发展前景。但在恶劣条件或极端环境下使用仍然存在信号输出失真,易被腐蚀等风险。超疏水柔性应变传感器将超疏水涂层的拒水、表面自清洁、防腐抗污与柔性应变传感器的高延展性、高灵敏度等优势相结合,增强了传感器的性能并拓宽了在人体运动监测等方面的应用。 方法 第一,本文综述了超疏水柔性应变传感器的基本性能参数包括灵敏度、传感工作范围、循环稳定性、线性度和响应时间。第二,介绍了超疏水柔性应变传感器的常用材料以及构建方法。常用材料从超疏水层、导电层、柔性衬底三个部分分别介绍,并总结了不同材料类型的优缺点;构建方法分为材料复合和图案转移两类,主要讨论超疏水层和导电层在柔性衬底上的组合策略。第三,综述了超疏水柔性应变传感器的功能,包括防水防汗、防腐、自清洁以及抗菌。第四,综述了超疏水柔性应变传感器在人体运动监测中的应用,其与人机界面和物联网等技术相结合后,为健康监测、康复训练、信号通讯、远程控制应用领域提供了便携、可穿戴且实时的优势,能够及时地获得人体运动监测信息。最后,对该领域做出展望。 结果 经过对国内外文献的研究调查,超疏水柔性应变传感器目前在人体运动监测等各种实际应用中有着十分广阔的发展前景,在保证传感性能的同时还增强了防水防汗、防腐、自清洁以及抗菌的功能。随着可穿戴设备的普及,超疏水柔性应变传感器在人体运动监测领域展现出巨大市场前景,并在健康监测、康复训练、信号通讯和远程控制方面带来了新的突破口。 结论 尽管有着很好的发展前景,但根据已知的研究现状,仍旧存在不容忽视的问题。(1)即使现在有大量的材料和结构被不断开发,但平衡传感器性能的所有关键参数也很困难。通常高灵敏度的传感器意味着较小的工作范围或较差的稳定性,然而在人体运动监测的实际应用中要求传感器具备高灵敏度和宽工作范围。(2)超疏水柔性应变传感器虽然较普通柔性应变传感器增加了多功能应用,但在亲肤性、透气性和舒适度方面仍需要更多研究以及改进。(3)大多数的超疏水柔性应变传感器依然存在制备过程较为复杂的问题,采用合理制备方法的同时也要考虑高效商业化大规模生产以及相对低成本的环保设计。超疏水柔性应变传感器自开发以来,极大扩展了应变传感器的形式和应用。未来随着通信技术的迅速发展,将向着集成、人机交互的方向不断前进,催生出更多丰富的智能可穿戴设备。 Abstract: A flexible strain sensor is a device that converts changes in external stress into electrical signals. It overcomes the shortcomings of traditional rigid sensors such as high hardness and poor human adaptability. As a wearable device, it has great development prospects in the field of human motion monitoring. However, in harsh conditions or extreme environments, there are still risks such as signal output distortion and easy corrosion. The superhydrophobic flexible strain sensor combines the water repellency, surface self-cleaning, anti-corrosion and anti-fouling of the superhydrophobic coating with the high ductility and high sensitivity of the flexible strain sensor, which enhances the performance of the sensor and broadens the applications in human motion monitoring. This paper reviews the basic performance parameters of superhydrophobic flexible strain sensors, the commonly used construction materials and construction methods as well as their functions and applications in human motion monitoring, and provides perspectives on this field.-
Key words:
- superhydrophobic /
- flexible strain sensor /
- human motion monitoring /
- underwater monitoring /
- wearable
-
图 2 (a) 聚二甲基硅氧烷 (PDMS)多氟化策略示意图[33];(b) 以芦苇叶为模板的超疏水柔性应变传感器制备示意图[34];(c) 可拉伸和超疏水PDMS/碳纳米管(CNTs)复合应变传感器的制备示意图[35]
Figure 2. (a) Illustration of the multi-fluorination strategy on polydimethylsiloxane (PDMS)[33]; (b) Schematic diagram of superhydrophobic flexible strain sensor using reed leaf as template[34]; (c) Schematic diagram of the fabrication process of the stretchable and superhydrophobic PDMS/carbon nanotubes (CNTs) composite strain sensor[35]
WCA—Water contact angle; SSMF—Superhydrophobic shape memory film; AgNWs—Ag nanowires; PCL—Polycaprolactone; PU—Polyurethane; PMMA—Polymethyl methacrylate; PET—Polyethylene terephthalate
图 3 (a) 水滴落在超疏水荷叶上的光学图片及超疏水荷叶表面乳突状结构的SEM图像[36];(b) 荷叶表面的超疏水原理示意图[9]
Figure 3. (a) Optical picture of water drops falling on a superhydrophobic lotus leaf and SEM image of the papillae structure of the superhydrophobic lotus leaf[36]; (b) Schematic diagram of the superhydrophobic principle of the lotus leaf[9]
图 5 超疏水柔性应变传感器的自清洁性能:(a) 水滴在rGO/PPy/PDMS/PU海绵传感器表面和内部的照片以及牛奶、咖啡、茶和pH值为1、13的常见液体滴在传感器表面的照片[75];(b) 利用水轻松去除无纺布基超疏水柔性应变传感器表面的天然土壤和色素[76]
Figure 5. Self-cleaning performance of the superhydrophobic flexible strain sensor: (a) Photographs of water drops on the surface and inside of the rGO/PPy/PDMS/PU sponge sensor as well as milk, coffee, tea, and common liquids with pH=1 and 13 on the sensor surface[75]; (b) Easy removal of natural soil and pigments from the surface of the nonwoven-based superhydrophobic flexible strain sensor using water[76]
图 6 FAMG超疏水柔性应变传感器在抗菌中的应用[78]:(a) FAMG传感器的制备示意图;(b) Ag离子加入前后传感器的抗细菌粘附实验(I:初始状态;II:结束状态;III:细菌粘附在表面的SEM图像);(c) FAMG传感器抗细菌粘附原理示意图
Figure 6. Application of FAMG superhydrophobic flexible strain sensors in anti-bacterial applications[78]: (a) Schematic diagram of the FAMG sensor; (b) Anti-bacterial adhesion experiments of the sensor before and after Ag ion addition (I: Initial state; II: End state; III: SEM images of bacteria adhering to the surface); (c) Schematic diagram of the anti-bacterial adhesion principle of the FAMG sensor
APTES—Aminopropyltriethoxysilane; ε—Strain
图 7 超疏水柔性应变传感器在人体运动监测中的应用:(a) 实时监测心电信号[76];(b) 监测各种泳姿的电信号(LA、RA、LL、RL分别代表左臂、右臂、左腿、右腿)[86];(c) 利用手指弯曲在水下产生连续莫尔斯电码SOS[85];(d) 远程控制电灯开关及PowerPoint演示[34]
Figure 7. Applications of superhydrophobic flexible strain sensors in human motion monitoring: (a) Real-time monitoring of ECG signals[76]; (b) Monitoring of electrical signals for various swimming positions (LA, RA, LL, RL represent left arm, right arm, left leg, and right leg, respectively)[86]; (c) Generate continuous Morse code SOS underwater using finger flexion[85]; (d) Remote control of light switches as well as PowerPoint presentations[34]
ECG—Electrocardiogram; ΔR—Value of resistance change; R0—Initial resistance value
表 1 不同类型导电材料的优劣势特点
Table 1. Advantages and disadvantages of different types of conductive materials
Conductive materials Advantages Disadvantages Ref. Carbon based materials Chemical and thermal stability, good mechanical properties, easy functionalization Poor durability and transparency [40-41, 44] Metal nanomaterials Better electrical conductivity, suitable for complex structures Poor adhesion, easy oxidation [41, 45-46] Conductive polymers Easy to synthesize, low price Short lifespan [43, 47] 表 2 不同构建方法制备的超疏水柔性应变传感器性能总结
Table 2. Performance summary of superhydrophobic flexible strain sensor prepared by different construction methods
Construction methods Construction materials CA/(°) Max GF Work scope/% Cycle stability/
timeResponse time Ref. Material composition Dip coating Sponges/CNTs 153 1.14 0-175 2400 0.4 s [24] Dip coating PU/SiO2/G 152.3 5.9 0-120 600 — [38] Spraying Paper/AgNPs/SiO2/
MWCNTs164 263.34 — 12000 78 ms [11] Spraying MWCNTs/TPE 162 80 0-76 5000 8 ms [26] LBL MXene/AgNWs 152.5 — — — 5 s [55] Dissolution and recuring G/TPU 158 14.14 — — — [54] Pattern transferring FsLDW rGO/PDMS 162 8699 0-1 10000 107 μs [59] Laser direct writ-
ing technologySR/MWCNTs/LIG 155 667 0-230 2500 — [63] CO2 laser
engravingPDMS/CNT 155 3.1 0-100 5000 — [35] Reactive ion etching PS/PDMS/CNT 165 0.6 0-80 10000 — [64] Template Method AgNWs/CNTs/PCL/PU 152 — 0-100 25000 — [34] Notes: G—Graphene; TPE—Thermoplastic elastomer; SR—Silicone rubber; CNT—Carbon nanotube; PS—Polystyrene; PCL—Polycaprolactone; AgNPs—Ag nanoparticles; MWCNTs—Multi-walled carbon nanotubes; TPU—Thermoplastic polyurethane; LIG—Laser induced graphene; GF—Gauge factor; LBL—Layer-by-layer self-assembly; FsLDW—Femtosecond laser direct writing; rGO—Reduced graphene oxide; CA—Contact angle. 表 3 超疏水柔性应变传感器在人体运动监测中的功能
Table 3. Functions of superhydrophobic flexible strain sensor in human motion monitoring
Functions Construction materials Max GF Work scope/% Cycle stability/time Response time/ms Ref. Waterproof and sweatproof TPE/WMCNTs/PDMS 69.84 0-80 1000 60 [27] WMCNTs/PDMS 22.64 0-200 10000 — [33] Paper/MXene 17.4 0-0.8 1000 200 [68] Sponge/PAN/PI/rGO/PDMS — >95 1000 — [70] PDMS/CB/SiO2 354 0-250 10000 — [80] PDMS/GO 1199.10 0-400 3000 88 [81] Anti-corrosion RB/AgNPs/PDMS 1153.0 0-60 25000 — [72] RTV/WMCNTs 214 0-447 10000 — [73] EB/AgNPs/OCA 61.8 0-120 2000 502 [82] Paper/CB/CNT/Hf-SiO2 7.5 −0.8-0.8 1000 — [83] Self-cleaning TPU/GO 14.14 0-350 1000 — [54] Sponge/rGO/PPy/PDMS — — 5000 118 [75] CB/CNTs/PFOTES-TiO2 NPs 1134.7 0-1050.0 5000 102 [76] CNC/G 23600 0-98 1000 33 [84] Anti-bacterial Fabric/GO/CNT/Cu 0.18 0-150 1200 — [79] FAS/Ag/MWCNG/G-PDMS 1989 0.1-170 1000 150 [78] Notes: PAN—Polyacrylonitrile; RTV—Room temperature vulcanized silicone rubber; GO—Graphene oxide; CNC—Cellulose nanocrystal; FAS—Heptadecafluoro-1,1,2,2-tetradecyl trimethoxysilane; G-PDMS—Graphene-modified PDMS; PI—Polyimide; CB—Carbon black; RB—Rubber band; OCA—Octadecanoic acid; Hf-SiO2—Hydrophobic fumed silic; PPy—Polypyrrole; PFOTES-TiO2 NPs—Perfluoro-octyltriethoxysilane modified TiO2 nanoparticles. -
[1] WANG W, YANG S, DING K, et al. Biomaterials- and biostructures inspired high-performance flexible stretchable strain sensors: A review[J]. Chemical Engineering Journal,2021,425:129949. doi: 10.1016/j.cej.2021.129949 [2] PYO S, LEE J, BAE K, et al. Recent progress in flexible tactile sensors for human-interactive systems: From sensors to advanced applications[J]. Advanced Materials,2021,33(47):e2005902. doi: 10.1002/adma.202005902 [3] LIU X, WEI Y, QIU Y. Advanced flexible skin-like pressure and strain sensors for human health monitoring[J]. Micromachines (Basel),2021,12(6):695. doi: 10.3390/mi12060695 [4] SERVATI A, ZOU L, WANG Z J, et al. Novel flexible wearable sensor materials and signal processing for vital sign and human activity monitoring[J]. Sensors (Basel),2017,17(7):1622. doi: 10.3390/s17071622 [5] GE G, HUANG W, SHAO J, et al. Recent progress of flexible and wearable strain sensors for human-motion monitoring[J]. Journal of Semiconductors,2018,39(1):15554-15564. [6] SUN L, GUO J, CHEN H, et al. Tailoring materials with specific wettability in biomedical engineering[J]. Advanced Science (Weinh),2021,8(19):e2100126. doi: 10.1002/advs.202100126 [7] ZHANG W, WANG D, SUN Z, et al. Robust superhydrophobicity: Mechanisms and strategies[J]. Chemical Society Reviews,2021,50(6):4031-4061. doi: 10.1039/D0CS00751J [8] ZHU H, HUANG Y, LOU X, et al. Bioinspired superwetting surfaces for biosensing[J]. View,2020,2(1):1032640. [9] FAN H, GUO Z. Bioinspired surfaces with wettability: Biomolecule adhesion behaviors[J]. Biomaterials Science,2020,8(6):1502-1535. doi: 10.1039/C9BM01729A [10] DUAN L, D'HOOGE D R, CARDON L. Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application[J]. Progress in Materials Science,2020,114:100617. doi: 10.1016/j.pmatsci.2019.100617 [11] LIU L, JIAO Z, ZHANG J, et al. Bioinspired, superhydrophobic, and paper-based strain sensors for wearable and underwater applications[J]. ACS Applied Materials & Interfaces,2020,13(1):1967-1978. [12] WANG X, YU J, CUI Y, et al. Research progress of flexible wearable pressure sensors[J]. Sensors and Actuators A: Physical,2021,330:112838. doi: 10.1016/j.sna.2021.112838 [13] GAO J, WANG L, GUO Z, et al. Flexible, superhydrophobic, and electrically conductive polymer nanofiber composite for multifunctional sensing applications[J]. Chemical Engineering Journal,2020,381:122778. doi: 10.1016/j.cej.2019.122778 [14] SOURI H, BANERJEE H, JUSUFI A, et al. Wearable and stretchable strain sensors: Materials, sensing mechanisms, and applications[J]. Advanced Intelligent Systems,2020,2(8):2000039. doi: 10.1002/aisy.202000039 [15] LIU Y F, LI Y Q, HUANG P, et al. On the evaluation of the sensitivity coefficient of strain sensors[J]. Advanced Electronic Materials,2018,4(12):1800353. doi: 10.1002/aelm.201800353 [16] HAN F, LI M, YE H, et al. Materials, electrical performance, mechanisms, applications, and manufacturing approaches for flexible strain sensors[J]. Nanomaterials (Basel),2021,11(5):1220. doi: 10.3390/nano11051220 [17] LIM H R, KIM H S, QAZI R, et al. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment[J]. Advanced Materials, 2020, 32(15): e1901924. [18] CHU Z, JIAO W, HUANG Y, et al. Superhydrophobic gradient wrinkle strain sensor with ultra-high sensitivity and broad strain range for motion monitoring[J]. Journal of Materials Chemistry A,2021,9(15):9634-9643. doi: 10.1039/D0TA11959H [19] 邢任权, 闫静, 杨光, 等. 纤维/纱线柔性电阻式应变传感器的研究进展[J]. 产业用纺织品, 2022, 40(1):1-7. doi: 10.3969/j.issn.1004-7093.2022.01.001XING Renquan, YAN Jing, YANG Guang, et al. Research progress on flexible resistive strain sensors for fibers/yarns[J]. Technical Textiles,2022,40(1):1-7(in Chinese). doi: 10.3969/j.issn.1004-7093.2022.01.001 [20] LI S, XU R, WANG J, et al. Ultra-stretchable, super-hydrophobic and high-conductive composite for wearable strain sensors with high sensitivity[J]. Journal of Colloid & Interface Science,2022,617:372-382. [21] AMJADI M, KYUNG K U, PARK I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review[J]. Advanced Functional Materials,2016,26(11):1678-1698. doi: 10.1002/adfm.201504755 [22] GAO W C, WU W, CHEN C Z, et al. Design of a superhydrophobic strain sensor with a multilayer structure for human motion monitoring[J]. ACS Applied Materials and Interfaces,2022,14(1):1874-1884. doi: 10.1021/acsami.1c17565 [23] 胡海龙, 马亚伦, 张帆, 等. 柔性纳米复合材料压阻式应变传感器的研究进展[J]. 复合材料学报, 2022, 39(1):1-22. doi: 10.13801/j.cnki.fhclxb.20210729.004HU Hailong, MA Yalun, ZHANG Fan, et al. Advances in flexible nanocomposite piezoresistive strain sensors[J]. Acta Materiae Compositae Sinica,2022,39(1):1-22(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210729.004 [24] WANG L, HUANG X, WANG D, et al. Lotus leaf inspired superhydrophobic rubber composites for temperature stable piezoresistive sensors with ultrahigh compressibility and linear working range[J]. Chemical Engineering Journal,2021,405:127025. doi: 10.1016/j.cej.2020.127025 [25] KHALID M A U, CHANG S H. Flexible strain sensors for wearable applications fabricated using novel functional nanocomposites: A review[J]. Composite Structures,2022,284:115214. doi: 10.1016/j.compstruct.2022.115214 [26] LI L, BAI Y, LI L, et al. A superhydrophobic smart coating for flexible and wearable sensing electronics[J]. Advanced Materials,2017,29(43):1702517. doi: 10.1002/adma.201702517 [27] DING Y R, XUE C H, FAN Q Q, et al. Fabrication of superhydrophobic conductive film at air/water interface for flexible and wearable sensors[J]. Chemical Engineering Journal,2021,404:126489. doi: 10.1016/j.cej.2020.126489 [28] 王志磊. 超亲水、超疏水表面的研究进展[J]. 当代化工, 2010, 39(5):590-593. doi: 10.3969/j.issn.1671-0460.2010.05.030WANG Zhilei. Advances in research on superhydrophilic and superhydrophobic surfaces[J]. Contemporary Chemical Industry,2010,39(5):590-593(in Chinese). doi: 10.3969/j.issn.1671-0460.2010.05.030 [29] ZHAO H, GAO W C, LI Q, et al. Recent advances in superhydrophobic polyurethane: Preparations and applications[J]. Advances in Colloid and Interface Science,2022,303:102644. doi: 10.1016/j.cis.2022.102644 [30] 张秋霞, 龚复学, 董楠楠. 有机氟化物等离子体处理制备超耐腐蚀聚氯乙烯及性能研究[J]. 塑料科技, 2021, 49(2):44-47. doi: 10.15925/j.cnki.issn1005-3360.2021.02.011ZHANG Qiuxia, GONG Fuxue, DONG Nannan. Preparation of super corrosion resistant polyvinyl chloride by organofluoride plasma treatment and performance study[J]. Plastic Technology,2021,49(2):44-47(in Chinese). doi: 10.15925/j.cnki.issn1005-3360.2021.02.011 [31] WANG Q, SUN G, TONG Q, et al. Fluorine-free superhydrophobic coatings from polydimethylsiloxane for sustainable chemical engineering: Preparation methods and applications[J]. Chemical Engineering Journal,2021,426:130829. doi: 10.1016/j.cej.2021.130829 [32] LIN L, CHOI Y, CHEN T, et al. Superhydrophobic and wearable TPU based nanofiber strain sensor with outstanding sensitivity for high-quality body motion monitoring[J]. Chemical Engineering Journal,2021,419:129513. doi: 10.1016/j.cej.2021.129513 [33] WANG P, WEI W, LI Z, et al. A superhydrophobic fluorinated PDMS composite as a wearable strain sensor with excellent mechanical robustness and liquid impalement resistance[J]. Journal of Materials Chemistry A,2020,8(6):3509-3516. doi: 10.1039/C9TA13281C [34] MA L, WANG J, HE J, et al. Biotemplated fabrication of a multifunctional superwettable shape memory film for wearable sensing electronics and smart liquid droplet manipulation[J]. ACS Applied Materials and Interfaces,2021,13(26):31285-31297. doi: 10.1021/acsami.1c08319 [35] LIU K, YANG C, SONG L, et al. Highly stretchable, superhydrophobic and wearable strain sensors based on the laser-irradiated PDMS/CNT composite[J]. Composites Science and Technology,2022,218:109148. doi: 10.1016/j.compscitech.2021.109148 [36] MA Y, TIAN P, BOUNMYXAY M, et al. Calcium carbonate@silica composite with superhydrophobic properties[J]. Molecules,2021,26(23):7180. doi: 10.3390/molecules26237180 [37] ALLIONE M, LIMONGI T, MARINI M, et al. Micro/nanopatterned superhydrophobic surfaces fabrication for biomolecules and biomaterials manipulation and analysis[J]. Micromachines (Basel),2021,12(12):1501. doi: 10.3390/mi12121501 [38] GAO J, LI B, HUANG X, et al. Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring[J]. Chemical Engineering Journal,2019,373:298-306. doi: 10.1016/j.cej.2019.05.045 [39] REN Z, YANG J, QI D, et al. Flexible sensors based on organic-inorganic hybrid materials[J]. Advanced Materials Technologies,2021,6(4):2000889. doi: 10.1002/admt.202000889 [40] YAN T, WANG Z, PAN Z J. Flexible strain sensors fabricated using carbon-based nanomaterials: A review[J]. Current Opinion in Solid State and Materials Science,2018,22(6):213-228. doi: 10.1016/j.cossms.2018.11.001 [41] LIN L, WANG L, LI B, et al. Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors[J]. Chemical Engineering Journal,2020,385:123391. doi: 10.1016/j.cej.2019.123391 [42] 王军庆, 李龙, 钱祥宇. 基于导电聚合物柔性超级电容器电极材料的研究进展[J]. 合成纤维, 2020, 49(8):51-56. doi: 10.16090/j.cnki.hcxw.2020.08.017WANG Junqin, LI Long, QIAN Xiangyu. Research progress of flexible supercapacitor electrode materials based on conducting polymers[J]. Synthetic Fiber,2020,49(8):51-56(in Chinese). doi: 10.16090/j.cnki.hcxw.2020.08.017 [43] HE J, SHI F, LIU Q, et al. Wearable superhydrophobic PPy/MXene pressure sensor based on cotton fabric with superior sensitivity for human detection and information transmission[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,642:128676. doi: 10.1016/j.colsurfa.2022.128676 [44] WEN N, ZHANG L, JIANG D, et al. Emerging flexible sensors based on nanomaterials: Recent status and applications[J]. Journal of Materials Chemistry A,2020,8(48):25499-25527. doi: 10.1039/D0TA09556G [45] LIU Y, WANG H, ZHAO W, et al. Flexible, stretchable sensors for wearable health monitoring: Sensing mechanisms, materials, fabrication strategies and features[J]. Sensors (Basel),2018,18(2):645. doi: 10.3390/s18020645 [46] JOO H, JUNG D, SUNWOO S H, et al. Material design and fabrication strategies for stretchable metallic nanocomposites[J]. Small,2020,16(11):e1906270. doi: 10.1002/smll.201906270 [47] PAVEL I A, LAKARD S, LAKARD B. Flexible sensors based on conductive polymers[J]. Chemosensors,2022,10(3):97. doi: 10.3390/chemosensors10030097 [48] CHENG M, ZHU G, ZHANG F, et al. A review of flexible force sensors for human health monitoring[J]. Journal of Advanced Research,2020,26:53-68. doi: 10.1016/j.jare.2020.07.001 [49] 王鲁凯, 冯军宗, 李良军, 等. 疏水改性聚酰亚胺的研究进展[J]. 材料导报, 2018, 32(S2):264-269.WANG Lukai, FENG Junzong, LI Liangjun, et al. Progress in the research of hydrophobically modified polyimide[J]. Materials Guide,2018,32(S2):264-269(in Chinese). [50] 魏子尊. 聚氨酯复合材料在柔性传感器领域的应用与研究进展[J]. 塑料科技, 2021, 49(8):109-112.WEI Zizun. Application and research progress of polyurethane composites in the field of flexible sensors[J]. Plastic Technology,2021,49(8):109-112(in Chinese). [51] 王志刚, 徐琴琴, 林润泽, 等. 基于银/石墨烯纳米复合材料的柔性压力传感器—材料制备和微纳结构构建[J]. 化工进展, 2021, 40(6):3300-3313. doi: 10.16085/j.issn.1000-6613.2020-1310WANG Zhigang, XU Qinqin, LIN Runze, et al. Flexible pressure sensors based on silver/graphene nanocomposites— Material preparation and micro and nano structure construction[J]. Chemical Progress,2021,40(6):3300-3313(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-1310 [52] LIU Y, SHENG Z, HUANG J, et al. Moisture-resistant MXene-sodium alginate sponges with sustained superhydrophobicity for monitoring human activities[J]. Chemical Engeering Journal,2022,432:134370. doi: 10.1016/j.cej.2021.134370 [53] HEO J S, HOSSAIN M F, KIM I. Challenges in design and fabrication of flexible/stretchable carbon- and textile-based wearable sensors for health monitoring: A critical review[J]. Sensors (Basel),2020,20(14):3927. doi: 10.3390/s20143927 [54] WANG P, SUN B, LIANG Y, et al. A stretchable and super-robust graphene superhydrophobic composite for electromechanical sensor application[J]. Journal of Materials Chemistry A,2018,6(22):10404-10410. doi: 10.1039/C8TA01923A [55] LIU L X, CHEN W, ZHANG H B, et al. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity[J]. Advanced Functional Materials,2019,29(44):1905197. doi: 10.1002/adfm.201905197 [56] YANG H, LEOW W R, CHEN X. 3D printing of flexible electronic devices[J]. Small Methods,2018,2(1):1700259. doi: 10.1002/smtd.201700259 [57] LI H, SONG H, LONG M, et al. Mortise-tenon joint structured hydrophobic surface-functionalized barium titanate/polyvinylidene fluoride nanocomposites for printed self-powered wearable sensors[J]. Nanoscale,2021,13(4):2542-2555. doi: 10.1039/D0NR07525F [58] ZHAO J, ZHAO Y, PENG Y, et al. Review of femtosecond laser direct writing fiber-optic structures based on refractive index modification and their applications[J]. Optics & Laser Technology,2022,146:107473. [59] DINH LE T S, AN J, HUANG Y, et al. Ultrasensitive anti-interference voice recognition by bio-inspired skin-attachable self-cleaning acoustic sensors[J]. ACS Nano,2019,13(11):13293-13303. doi: 10.1021/acsnano.9b06354 [60] NIU H, ZHANG H, YUE W, et al. Micro-nano processing of active layers in flexible tactile sensors via template methods: A review[J]. Small,2021,17(41):e2100804. doi: 10.1002/smll.202100804 [61] 陈莉, 张艳琳, 刘皓, 等. 智能可穿戴产品用柔性传感器研究进展[J]. 针织工业, 2021, 394(11):81-85. doi: 10.3969/j.issn.1000-4033.2021.11.020CHEN Li, ZHANG Yanlin, LIU Hao, et al. Research progress on flexible sensors for smart wearable products[J]. Knitting Industry,2021,394(11):81-85(in Chinese). doi: 10.3969/j.issn.1000-4033.2021.11.020 [62] BAEK S, JANG H, KIM S Y, et al. Flexible piezocapacitive sensors based on wrinkled microstructures: Toward low-cost fabrication of pressure sensors over large areas[J]. RSC Advances,2017,7(63):39420-39426. doi: 10.1039/C7RA06997A [63] LIU K, YANG C, ZHANG S, et al. Laser direct writing of a multifunctional superhydrophobic composite strain sensor with excellent corrosion resistance and anti-icing/deicing performance[J]. Materials & Design,2022,218:110689. [64] SAHOO B N, WOO J, ALGADI H, et al. Superhydrophobic, transparent, and stretchable 3D hierarchical wrinkled film-based sensors for wearable applications[J]. Advanced Materials Technologies,2019,4(10):1900230. doi: 10.1002/admt.201900230 [65] 彭军, 李津, 李伟, 等. 柔性可拉伸应变传感器研究进展与应用[J]. 化工新型材料, 2018, 46(11):39-43.PENG Jun, LI Jin, LI Wei, et al. Research progress and application of flexible stretchable strain sensors[J]. New Chemical Materials,2018,46(11):39-43(in Chinese). [66] TAI H, DUAN Z, WANG Y, et al. Paper-based sensors for gas, humidity, and strain detections: A review[J]. ACS Applied Materials & Interfaces,2020,12(28):31037-31053. [67] LIAO X, ZHANG Z, LIAO Q, et al. Flexible and printable paper-based strain sensors for wearable and large-area green electronics[J]. Nanoscale,2016,8(26):13025-13032. doi: 10.1039/C6NR02172G [68] BU Y, SHEN T, YANG W, et al. Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2T MXene/paper for human-motion monitoring and E-skin[J]. Science Bulletin,2021,66(18):1849-1857. doi: 10.1016/j.scib.2021.04.041 [69] DING Y, XU T, ONYILAGHA O, et al. Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges[J]. ACS Applied Materials & Interfaces,2019,11(7):6685-6704. [70] LIANG Z, ZHANG H, HUANG R, et al. Superhydrophobic and elastic 3D conductive sponge made from electrospun nanofibers and reduced graphene oxide for sweatproof wearable tactile pressure sensor[J]. Polymer,2021,230:124025. doi: 10.1016/j.polymer.2021.124025 [71] PEI X, WANG J, ZHANG J, et al. Facile preparation of superhydrophobic conductive textiles and the application of real-time sensor of joint motion sensor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,628:127257. doi: 10.1016/j.colsurfa.2021.127257 [72] WANG L, LUO J, CHEN Y, et al. Fluorine-free superhydrophobic and conductive rubber composite with outstanding deicing performance for highly sensitive and stretchable strain sensors[J]. ACS Applied Materials & Interfaces,2019,11(19):17774-17783. doi: 10.1021/acsami.9b03545 [73] JIA S, DENG S, QING Y, et al. A coating-free superhydrophobic sensing material for full-range human motion and microliter droplet impact detection[J]. Chemical Engineering Journal,2021,410:128418. doi: 10.1016/j.cej.2021.128418 [74] XU Q, ZHANG W, DONG C, et al. Biomimetic self-cleaning surfaces: Synthesis, mechanism and applications[J]. Journal of the Royal Society Interface,2016,13(122):0300. [75] NI Y, HUANG J, LI S, et al. Robust superhydrophobic rGO/PPy/PDMS coatings on a polyurethane sponge for underwater pressure and temperature sensing[J]. ACS Applied Materials & Interfaces,2021,13(44):53271-53281. [76] DONG J, WANG D, PENG Y, et al. Ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring[J]. Nano Energy,2022,97:107160. doi: 10.1016/j.nanoen.2022.107160 [77] FALDE E J, YOHE S T, COLSON Y L, et al. Superhydrophobic materials for biomedical applications[J]. Biomaterials,2016,104:87-103. doi: 10.1016/j.biomaterials.2016.06.050 [78] LIN J, CAI X, LIU Z, et al. Anti-liquid-interfering and bacterially antiadhesive strategy for highly stretchable and ultrasensitive strain sensors based on cassie-baxter wetting state[J]. Advanced Functional Materials,2020,30(23):2000398. doi: 10.1002/adfm.202000398 [79] PARK C, KIM T, SAMUEL E P, et al. Superhydrophobic antibacterial wearable metallized fabric as supercapacitor, multifunctional sensors, and heater[J]. Journal of Power Sources,2021,506:230142. doi: 10.1016/j.jpowsour.2021.230142 [80] DAI Z, DING S, LEI M, et al. A superhydrophobic and anti-corrosion strain sensor for robust underwater applications[J]. Journal of Materials Chemistry A,2021,9(27):15282-15293. doi: 10.1039/D1TA04259A [81] CHU Z, JIAO W, LI J, et al. A novel wrinkle-gradient strain sensor with anti-water interference and high sensing performance[J]. Chemical Engineering Journal,2021,421:129873. doi: 10.1016/j.cej.2021.129873 [82] WANG L, XIA M, WANG D, et al. Bioinspired superhydrophobic and durable octadecanoic acid/Ag nanoparticle-decorated rubber composites for high-performance strain sensors[J]. ACS Sustainable Chemistry & Engineering,2021,9(21):7245-7254. [83] LI Q, LIU H, ZHANG S, et al. Superhydrophobic electrically conductive paper for ultrasensitive strain sensor with excellent anticorrosion and self-cleaning property[J]. ACS Applied Materials & Interfaces,2019,11(24):21904-21914. [84] LIU H, LI Q, BU Y, et al. Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor[J]. Nano Energy,2019,66:104143. doi: 10.1016/j.nanoen.2019.104143 [85] ZHU T, NI Y, ZHAO K, et al. A breathable knitted fabric-based smart system with enhanced superhydrophobicity for drowning alarming[J]. ACS Nano,2022,16(11):18018-18026. doi: 10.1021/acsnano.2c08325 [86] ZHAI H, XU L, LIU Z, et al. Twisted graphene fibre based brethable, wettable and washable anti-jamming strain sensor for underwater motion sensing[J]. Chemical Engineering Journal,2022,439:135502. doi: 10.1016/j.cej.2022.135502 [87] YANG Z, LI H, ZHANG S, et al. Superhydrophobic MXene@carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor[J]. Chemical Engineering Journal,2021,425:130462. doi: 10.1016/j.cej.2021.130462 -