Preparation of Fe3O4/poly(styrene-isooctyl acrylate) composite emulsion via miniemulsion polymerization and damping properties of its latex film
-
摘要:
苯丙乳液的胶膜由于具有良好的附着力、硬度、耐候性以及可控的成本等优点被广泛用作水性阻尼涂料的基础乳液。如何在常规苯丙乳液所得胶膜的基础上有效提升其损耗因子(tanδ)、拓宽其有效阻尼温域(tanδ≥0.3时对应的温度范围)一直是相关研究者的关注热点。除了调节共聚物单体组成、侧链结构和交联密度之外,合理使用填料也可以增加胶膜的损耗能力,提升阻尼效果。一般情况下,常将膨胀珍珠岩粉、石墨、碳酸钙等微米级无机物作为填料使用。而纳米级填料由于具有极大的比表面积,可大幅增加材料内部界面摩擦,应在提升胶膜阻尼性能方面较微米级填料有更优异表现。将聚合物乳液与填料进行复合的最常见方式是直接共混,而直接共混易造成纳米级填料在聚合物基体中的团聚,难以发挥纳米材料高比表面积的优势,甚至会形成缺陷,影响材料整体性能。本文通过细乳液聚合法将油酸(OA)修饰的纳米Fe3O4包覆在聚(苯乙烯‑丙烯酸异辛酯)(P(St‑2‑EHA))乳胶粒内部得到Fe3O4/P(St‑2‑EHA)复合乳液。由这种复合乳液制备胶膜可克服共混法易产生的纳米填料在聚合物基体中团聚的问题,使纳米填料在胶膜中良好分散,显著增加有机无机界面区域。在外力作用下,界面处发生微观剪切摩擦,提升内耗而增大阻尼效果。结果显示,当St与2‑EHA质量比为5:5、交联剂二乙烯基苯(DVB)用量和OA‑Fe3O4用量分别为St、2-EHA总质量的2wt%和10wt%时,制得的Fe3O4/P(St‑2‑EHA)复合胶膜tanδ峰值和有效阻尼温域分别达到2.066和59.2℃,比纯P(St‑2‑EHA)胶膜分别提升了7.26%和19.87%,比共混法得到的复合胶膜分别提升了28.80%和17.28%。此外,Fe3O4/P(St‑2‑EHA)复合胶膜还较后两者具有了更低的吸水率和更优的热稳定性。 OA‑Fe3O4用量(a)和制备工艺(b)对复合胶膜损耗因子的影响 Abstract: The styrene-acrylic emulsion used to prepare waterborne damping coatings needs to further increase the damping factor and broaden the effective damping temperature range. In order to improve the damping performance of styrene-acrylic emulsion, oleic acid(OA) modified nano-Fe3O4(OA-Fe3O4) was used as the coated filler to prepare Fe3O4/poly(styrene acrylate)(Fe3O4/P(St-2-EHA)) composite damping emulsion via miniemulsion polymerization. The composite emulsion and its latex film were characterized by XRD, TEM, SEM, DLS, TG and DMA. The effects of copolymer composition, surface properties and content of nano-Fe3O4 on the structure and performance of the emulsion and latex film were studied. The results show that the direct agglomeration of OA-Fe3O4 nanoparticles is weakened, and its dispersion in the composite emulsion is significantly improved. When the mass ratio of monomer St to 2-EHA is 5∶5, the obtained P(St-2-EHA) latex film has the highest loss factor (tanδ) peak (1.926). When the mass ratio of OA-Fe3O4 to the total mass of St, 2-EHA is 10wt%, the performance of the obtained Fe3O4/P(St-2-EHA) composite latex film has the best performance. Its tanδ peak value and effective damping temperature range width are 2.066 and 59.2℃, which are better than pure P(St-2-EHA) latex film and composite latex film prepared by blending method. Its water absorption rate is 3.4% and 10.4% lower than the latter two respectively. And the initial thermal decomposition temperature is higher, with the thermal stability improved.-
Key words:
- Fe3O4 /
- miniemulsion polymerization /
- encapsule /
- damping performance /
- water absorption /
- thermostability
-
表 1 纯Fe3O4颗粒和OA-Fe3O4的粒度数据
Table 1. Particle size data of pure Fe3O4 particles and OA-Fe3O4
Particle Size/nm PDI Zeta/mV Fe3O4 1796.0 0.929 −11.3 OA-Fe3O4 197.5 0.395 −19.3 Notes: OA–Oleic acid -
[1] SU Y P, LIN H, ZHANG S T, et al. One-step synthesis of novel renewable vegetable oil-based acrylate prepolymers and their application in uv-curable coatings[J]. Polymers,2020,12(5):1165. doi: 10.3390/polym12051165 [2] DENG Y J, ZHOU C, ZHANG M Y, et al. Effects of the reagent ratio on the properties of waterborne polyurethanes-acrylate for application in damping coating[J]. Progress in Organic Coatings, 2018, 122: 239-247. [3] LI Y, GUO L H, YE J, et al. The crosslinking directing dynamic behavior of polymer latex under the investigation toward waterborne damping coatings[J]. Journal of Applied Polymer Science,2020,138(2):e49676. [4] XIAO W, PEI M H, YUAN H X, et al. The performance study of waterborne damping coating[J]. Advanced Materials Research,2015,3818(1088-1088):444-448. [5] ZHENG X Y, ZHOU X, ZHANG G X, et al. Studies on the damping properties of polyacrylate emulsion/hindered phenol hybrids[J]. Polymer Journal, 2012, 44(5): 382-387. [6] CHEN D Y, DING M J, HUANG Z X, et al. Styrene-Acrylic emulsion with "transition layer" for damping coating: synthesis and characterization[J]. Polymers,2021,13(9):1406. doi: 10.3390/polym13091406 [7] FANG L H, SHEN Z, LI J F, et al. Damping properties of expanded graphite filled fluorinated polyacrylate composites[J]. Polymer Bulletin, 2021, 79(7): 4745-4759. [8] KATSIROPOULOS C V, PAPPAS P, KOUTROUMANIS N, et al. Improving the damping behavior of fiber-reinforced polymer composites with embedded superelastic shape memory alloys (SMA)[J]. Smart Materials and Structures,2020,29(2):025006. doi: 10.1088/1361-665X/ab6026 [9] MALEKZADEH Y, SHELESH-NEZHAD K. The effects of hno3-surface treated carbon fiber and nano-caco3 inclusions on dynamic mechanical and heat properties of pa6/abs-based composites[J]. Journal of Thermoplastic Composite Materials,2019,32(7):867-883. doi: 10.1177/0892705718804604 [10] PANWAR V, PAL K. Dynamic Performance of an aophous polymer composite under controlled loading of reduced graphene oxide based on entanglement of filler with polymer chains[J]. Journal of Polymer Research,2018,25(2):53. doi: 10.1007/s10965-017-1417-y [11] KIM J J, BROWN A D, BAKIS C E, et al. Hybrid carbon nanotube-carbon fiber composites for high damping[J]. Composites Science and Technology,2021,207:108712. doi: 10.1016/j.compscitech.2021.108712 [12] KHADAR P F, MAGHSOUD Z. Synthesis characterization and dynamic echanical properties of styrene crylate/nanoclay interpenetrating polymer network[J]. Polymer Composites,2019,1:1-12. [13] CHEN S B, WANG T M, WANG Q H, et al. Damping properties of polyurethane/epoxy graft interpenetrating polymer network composites filled with short carbon fiber and nano-SiO2[J]. TOURNAL of Macromolecular Science Part B, 2011, 50(5): 931-941. [14] CHO J K, SUN H, SEO H W, et al. Heat dissipative mchanical damping properties of epdm rubber compsites including hybrid fillers of aluminium nitride and boron nitride[J]. Soft Matter,2020,16(29):6812-6818. doi: 10.1039/C9SM02123J [15] ZHOU S S, YANG C H, HU J, et al. Damping analysis of some inorganic particles on poly(butyl-methacrylate)[J]. Materials,2018,11:992. doi: 10.3390/ma11060992 [16] HU B, ZHANG Z P, LIU X M. Preparation and damping property study of styrene-acrylic ipn/mt nano-composite[J]. Material Advanced Materials Research, 2011, 284-286: 382-386. [17] LIU M J, SONG G J, YI J, et al. Damping analysis of polyurethane/polyacrylate interpenetrating polymer network composites filled with graphite particles[J]. Polymers & Polymer Composites, 2013, 34(2): 288-292. [18] 赵艳娜. 苯乙烯-丙烯酸酯树脂/纳米SiO2核壳乳液的制备及性能[J]. 功能材料, 2012, 43(11):1472-1475. doi: 10.3969/j.issn.1001-9731.2012.11.030ZHAO Yanna. Preparation and properties of styrene-acrylate resin/nano-SiO2 core-shell emulsion[J]. Journal of Functional Materials,2012,43(11):1472-1475(in Chinese). doi: 10.3969/j.issn.1001-9731.2012.11.030 [19] RESENDE G, Dutra G V S, NETA M S B, et al. Well Dfined Poly(Methyl Methacrylate)-Fe3O4/Poly(Vinyl Pivalate) core-shell superparamagnetic nanpartcles: dsign and evaluation of in vitro cytotoxicity ativity against cancer cells[J]. Polymers (Basel),2020,12(12):2868. doi: 10.3390/polym12122868 [20] 邱守季, 杨磊, 张娅, 等. 微滴乳液聚合制备纳米SiO2/聚丙烯酸酯复合材料[J]. 复合材料学报, 2013, 30(5):29-33. doi: 10.3969/j.issn.1000-3851.2013.05.005QIU Shouji, YANG Lei, ZHANG Ya, et al. Nano-SiO2/polyacrylate composites were prepared by droplet emulsion polymerization[J]. Acta Materiae Compositae Sinica,2013,30(5):29-33(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.05.005 [21] 夏兆旺, 卢志伟, 鞠福瑜, 等. 基于颗粒阻尼技术的海洋平台结构减振试验研究[J]. 船舶力学, 2021, 25(03): 370-374.XIA Zhaowang, LU Zhiwei, JU Fuyu, et al. Experimental study on vibration reduction of offshore platform structures based on particle damping technology [J]. Ship mechanics, 2021, 25(03): 370-374(in Chinese). [22] VEERAMUTHUVEL P, SAIRAJAN K K, SHANKAR K. Vibration suppression of printed circuit boards using an external particle damper[J]. Journal of Sound and Vibration, 2016, 366: 98-116. [23] YU L H, HAO G Z, GU J J, et al. Fe3O4/PS magnetic nanoparticles: synthesis, characterization and their application as sorbents of oil from waste water[J]. Journal of Magnetism and Magnetic Materials,2015,394:14-21. doi: 10.1016/j.jmmm.2015.06.045 [24] BAHARVAND H. A new method for preparation of magnetic polymer particles[J]. Colloid and Polymer Science,2014,292(12):3311-3318. doi: 10.1007/s00396-014-3386-6 [25] 张和鹏, 张秋禹, 张宝亮, 等. 内部结构不对称磁性复合微球的制备及其影响因素探究[J]. 化学学报, 2012, 70(3): 345-351.ZHANG Hepeng, ZHANG Qiuyu, ZHANG Baoliang, et al. Preparation of asymmetric magnetic composite microspheres with internal structure and its influencing factors [J]. Acta Chemica Sinica, 2012, 70(3): 345-351(in Chinese). [26] WANG T T, LI W P, LUO L, et al. Ultrahigh dielectric constant composites based on the oleic acid modified ferroferric oxide nanoparticles and polyvinylidene fluoride[J]. Applied Physics Letters,2013,102(9):092904. doi: 10.1063/1.4795128 [27] 孙轶男, 刘婷婷, 杨天水, 等. 交联单体种类及其用量对丙烯酸酯乳胶聚合行为的影响[J]. 涂料工业, 2022, 52(6):35-40. doi: 10.12020/j.issn.0253-4312.2022.6.35SUN Yinan, LIU Tingting, YANG Tianshui, et al. Effects of types and amounts of crosslinking monomers on polymerization behavior of acrylate latex[J]. Coatings Industry,2022,52(6):35-40(in Chinese). doi: 10.12020/j.issn.0253-4312.2022.6.35 [28] 徐海燕, 任嗣利, 贾卫红, 等. 磁性可回收氟化石墨烯破乳材料的制备及乳液分离性能[J]. 高等学校化学学报, 2019, 40(3):508-517. doi: 10.7503/cjcu20180559XU Haiyan, REN Sili, JIA Weihong, et al. Preparation of magnetic recyclable fluorinated graphene demulsification material and its emulsion separation performance[J]. Chemical Journal of Chinese Universities,2019,40(3):508-517(in Chinese). doi: 10.7503/cjcu20180559 [29] WANG T, Chen S, Wang Q, et al. Damping analysis of polyurethane/epoxy graft interpenetrating polymer network composites filled with short carbon fiber and micro hollow glass bead[J]. Materials & Design,2010,31(8):3810-3815. -

计量
- 文章访问数: 82
- HTML全文浏览量: 29
- 被引次数: 0