留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

细乳液聚合法制备Fe3O4/聚(苯乙烯-丙烯酸异辛酯)复合乳液及其胶膜阻尼性能

曹西平 邓伟 程冠之 王希 关文勋 谢永江

曹西平, 邓伟, 程冠之, 等. 细乳液聚合法制备Fe3O4/聚(苯乙烯-丙烯酸异辛酯)复合乳液及其胶膜阻尼性能[J]. 复合材料学报, 2023, 41(0): 1-10
引用本文: 曹西平, 邓伟, 程冠之, 等. 细乳液聚合法制备Fe3O4/聚(苯乙烯-丙烯酸异辛酯)复合乳液及其胶膜阻尼性能[J]. 复合材料学报, 2023, 41(0): 1-10
Xiping CAO, Wei DENG, Guanzhi CHENG, Xi WANG, Wenxun GUAN, Yongjiang XIE. Preparation of Fe3O4/poly(styrene-isooctyl acrylate) composite emulsion via miniemulsion polymerization and damping properties of its latex film[J]. Acta Materiae Compositae Sinica.
Citation: Xiping CAO, Wei DENG, Guanzhi CHENG, Xi WANG, Wenxun GUAN, Yongjiang XIE. Preparation of Fe3O4/poly(styrene-isooctyl acrylate) composite emulsion via miniemulsion polymerization and damping properties of its latex film[J]. Acta Materiae Compositae Sinica.

细乳液聚合法制备Fe3O4/聚(苯乙烯-丙烯酸异辛酯)复合乳液及其胶膜阻尼性能

基金项目: 中国铁道科学研究院集团有限公司科研基金项目(2020YJ164、2022YJ129);国家自然科学基金(U1934206);黑龙江省自然科学基金联合引导项目(LH2019E059)
详细信息
    通讯作者:

    邓伟,博士,副教授,硕士生导师,研究方向为聚合物基复合电介质材料 E-mail:weideng@hrbust.edu.cn

    程冠之,博士,副研究员,研究方向为铁路工程材料 E-mail:chengguanzhi@163.com

  • 中图分类号: TQ633

Preparation of Fe3O4/poly(styrene-isooctyl acrylate) composite emulsion via miniemulsion polymerization and damping properties of its latex film

Funds: Research Programs of CARS (2020YJ164、2022YJ129);National Natural Science Foundation of China (U1934206);Heilongjiang Natural Science Foundation Joint Guidance Project (LH2019E059)
  • 摘要: 苯丙乳液的胶膜由于具有良好的附着力、硬度、耐候性以及可控的成本等优点被广泛用作水性阻尼涂料的基础乳液。如何在常规苯丙乳液所得胶膜的基础上有效提升其损耗因子(tanδ)、拓宽其有效阻尼温域(tanδ≥0.3时对应的温度范围)一直是相关研究者的关注热点。除了调节共聚物单体组成、侧链结构和交联密度之外,合理使用填料也可以增加胶膜的损耗能力,提升阻尼效果。一般情况下,常将膨胀珍珠岩粉、石墨、碳酸钙等微米级无机物作为填料使用。而纳米级填料由于具有极大的比表面积,可大幅增加材料内部界面摩擦,应在提升胶膜阻尼性能方面较微米级填料有更优异表现。将聚合物乳液与填料进行复合的最常见方式是直接共混,而直接共混易造成纳米级填料在聚合物基体中的团聚,难以发挥纳米材料高比表面积的优势,甚至会形成缺陷,影响材料整体性能。本文通过细乳液聚合法将油酸(OA)修饰的纳米Fe3O4包覆在聚(苯乙烯‑丙烯酸异辛酯)(P(St‑2‑EHA))乳胶粒内部得到Fe3O4/P(St‑2‑EHA)复合乳液。由这种复合乳液制备胶膜可克服共混法易产生的纳米填料在聚合物基体中团聚的问题,使纳米填料在胶膜中良好分散,显著增加有机无机界面区域。在外力作用下,界面处发生微观剪切摩擦,提升内耗而增大阻尼效果。结果显示,当St与2‑EHA质量比为5:5、交联剂二乙烯基苯(DVB)用量和OA‑Fe3O4用量分别为St、2-EHA总质量的2wt%和10wt%时,制得的Fe3O4/P(St‑2‑EHA)复合胶膜tanδ峰值和有效阻尼温域分别达到2.066和59.2℃,比纯P(St‑2‑EHA)胶膜分别提升了7.26%和19.87%,比共混法得到的复合胶膜分别提升了28.80%和17.28%。此外,Fe3O4/P(St‑2‑EHA)复合胶膜还较后两者具有了更低的吸水率和更优的热稳定性。OA‑Fe3O4用量(a)和制备工艺(b)对复合胶膜损耗因子的影响

     

  • 图  1  纳米Fe3O4(a)、Fe3O4/P(St-2-EHA)复合乳液及其胶膜(b)的制备过程示意图

    Figure  1.  Schematic diagrams of preparation process of Fe3O4 nanoparticles(a), Fe3O4/P(St-2-EHA) composite latex and its latex films(b)

    图  2  纯Fe3O4颗粒和OA-Fe3O4的XRD图谱

    Figure  2.  XRD patterns of pure Fe3O4 particles and OA-Fe3O4

    图  3  纯Fe3O4颗粒、OA和OA-Fe3O4的FTIR谱图

    Figure  3.  FTIR spectra of pure Fe3O4 particles, OA and OA-Fe3O4

    图  4  纯Fe3O4(a)和OA-Fe3O4(b)的TEM照片

    Figure  4.  TEM pictures of pure Fe3O4 particles (a) and OA-Fe3O4 particles (b)

    图  5  单体比例对P(St-2-EHA)胶膜损耗因子的影响

    Figure  5.  Effect of monomer ratio on loss factor of P(St-2-EHA) film

    图  6  单体比例对P(St-2-EHA)胶膜玻璃化转变温度的影响

    Figure  6.  Effect of monomer ratio on glass transition temperature of P(St-2-EHA) film

    图  7  P(St-2-EHA)和Fe3O4/P(St-2-EHA)胶膜FTIR谱图

    Figure  7.  FTIR spectra of P(St-2-EHA) latex film and Fe3O4/P(St-2-EHA) composite latex film

    图  8  P(St-2-EHA)粒子(a)和Fe3O4/P(St-2-EHA)复合粒子(b)的TEM照片及DLS粒度数据(c)

    Figure  8.  TEM pictures of P(St-2-EHA) latex particles (a) and OA-Fe3O4/P(St-2-EHA) composite latex particles (b), with particle size data obtained by DLS (c)

    图  9  不同复合胶膜的SEM及元素分布图:(a) Fe3O4/P(St-2-EHA), (b) P(St-2-EHA) blended with Fe3O4

    Figure  9.  SEM images and element distribution of two latex films under different preparation processes: (a) Fe3O4/P(St-2-EHA), (b) P(St-2-EHA) blended with Fe3O4

    图  10  OA-Fe3O4用量对Fe3O4/P(St-2-EHA)胶膜损耗因子的影响

    Figure  10.  The effect of the amount of OA-Fe3O4 on the loss factor of the Fe3O4/P(St-2-EHA) film

    图  11  复合工艺对P(St-2-EHA), Fe3O4/P(St-2-EHA)和共混复合胶膜胶膜损耗因子的影响

    Figure  11.  Effect of composite process on loss factor of P(St-2-EHA), Fe3O4/P(St-2-EHA) and blended composite latex film

    图  12  Fe3O4、OA-Fe3O4粒子与P(St-2-EHA)、Fe3O4/P(St-2-EHA)、共混复合胶膜的TGA曲线

    Figure  12.  TGA curves of Fe3O4 particles, OA-Fe3O4 particles, P(St-2-EHA) latex film, Fe3O4/P(St-2-EHA) latex film and blended composite latex film

    图  13  P(St-2-EHA), Fe3O4/P(St-2-EHA)和共混复合胶膜的吸水率

    Figure  13.  Water absorption curves of P(St-2-EHA), Fe3O4/P(St-2-EHA) and blended composite latex films

    表  1  纯Fe3O4颗粒和OA-Fe3O4的粒度数据

    Table  1.   Particle size data of pure Fe3O4 particles and OA-Fe3O4

    ParticleSize/nmPDIZeta/mV
    Fe3O41796.00.929−11.3
    OA-Fe3O4 197.50.395−19.3
    Notes: OA–Oleic acid
    下载: 导出CSV
  • [1] SU Y P, LIN H, ZHANG S T, et al. One-step synthesis of novel renewable vegetable oil-based acrylate prepolymers and their application in uv-curable coatings[J]. Polymers,2020,12(5):1165. doi: 10.3390/polym12051165
    [2] DENG Y J, ZHOU C, ZHANG M Y, et al. Effects of the reagent ratio on the properties of waterborne polyurethanes-acrylate for application in damping coating[J]. Progress in Organic Coatings, 2018, 122: 239-247.
    [3] LI Y, GUO L H, YE J, et al. The crosslinking directing dynamic behavior of polymer latex under the investigation toward waterborne damping coatings[J]. Journal of Applied Polymer Science,2020,138(2):e49676.
    [4] XIAO W, PEI M H, YUAN H X, et al. The performance study of waterborne damping coating[J]. Advanced Materials Research,2015,3818(1088-1088):444-448.
    [5] ZHENG X Y, ZHOU X, ZHANG G X, et al. Studies on the damping properties of polyacrylate emulsion/hindered phenol hybrids[J]. Polymer Journal, 2012, 44(5): 382-387.
    [6] CHEN D Y, DING M J, HUANG Z X, et al. Styrene-Acrylic emulsion with "transition layer" for damping coating: synthesis and characterization[J]. Polymers,2021,13(9):1406. doi: 10.3390/polym13091406
    [7] FANG L H, SHEN Z, LI J F, et al. Damping properties of expanded graphite filled fluorinated polyacrylate composites[J]. Polymer Bulletin, 2021, 79(7): 4745-4759.
    [8] KATSIROPOULOS C V, PAPPAS P, KOUTROUMANIS N, et al. Improving the damping behavior of fiber-reinforced polymer composites with embedded superelastic shape memory alloys (SMA)[J]. Smart Materials and Structures,2020,29(2):025006. doi: 10.1088/1361-665X/ab6026
    [9] MALEKZADEH Y, SHELESH-NEZHAD K. The effects of hno3-surface treated carbon fiber and nano-caco3 inclusions on dynamic mechanical and heat properties of pa6/abs-based composites[J]. Journal of Thermoplastic Composite Materials,2019,32(7):867-883. doi: 10.1177/0892705718804604
    [10] PANWAR V, PAL K. Dynamic Performance of an aophous polymer composite under controlled loading of reduced graphene oxide based on entanglement of filler with polymer chains[J]. Journal of Polymer Research,2018,25(2):53. doi: 10.1007/s10965-017-1417-y
    [11] KIM J J, BROWN A D, BAKIS C E, et al. Hybrid carbon nanotube-carbon fiber composites for high damping[J]. Composites Science and Technology,2021,207:108712. doi: 10.1016/j.compscitech.2021.108712
    [12] KHADAR P F, MAGHSOUD Z. Synthesis characterization and dynamic echanical properties of styrene crylate/nanoclay interpenetrating polymer network[J]. Polymer Composites,2019,1:1-12.
    [13] CHEN S B, WANG T M, WANG Q H, et al. Damping properties of polyurethane/epoxy graft interpenetrating polymer network composites filled with short carbon fiber and nano-SiO2[J]. TOURNAL of Macromolecular Science Part B, 2011, 50(5): 931-941.
    [14] CHO J K, SUN H, SEO H W, et al. Heat dissipative mchanical damping properties of epdm rubber compsites including hybrid fillers of aluminium nitride and boron nitride[J]. Soft Matter,2020,16(29):6812-6818. doi: 10.1039/C9SM02123J
    [15] ZHOU S S, YANG C H, HU J, et al. Damping analysis of some inorganic particles on poly(butyl-methacrylate)[J]. Materials,2018,11:992. doi: 10.3390/ma11060992
    [16] HU B, ZHANG Z P, LIU X M. Preparation and damping property study of styrene-acrylic ipn/mt nano-composite[J]. Material Advanced Materials Research, 2011, 284-286: 382-386.
    [17] LIU M J, SONG G J, YI J, et al. Damping analysis of polyurethane/polyacrylate interpenetrating polymer network composites filled with graphite particles[J]. Polymers & Polymer Composites, 2013, 34(2): 288-292.
    [18] 赵艳娜. 苯乙烯-丙烯酸酯树脂/纳米SiO2核壳乳液的制备及性能[J]. 功能材料, 2012, 43(11):1472-1475. doi: 10.3969/j.issn.1001-9731.2012.11.030

    ZHAO Yanna. Preparation and properties of styrene-acrylate resin/nano-SiO2 core-shell emulsion[J]. Journal of Functional Materials,2012,43(11):1472-1475(in Chinese). doi: 10.3969/j.issn.1001-9731.2012.11.030
    [19] RESENDE G, Dutra G V S, NETA M S B, et al. Well Dfined Poly(Methyl Methacrylate)-Fe3O4/Poly(Vinyl Pivalate) core-shell superparamagnetic nanpartcles: dsign and evaluation of in vitro cytotoxicity ativity against cancer cells[J]. Polymers (Basel),2020,12(12):2868. doi: 10.3390/polym12122868
    [20] 邱守季, 杨磊, 张娅, 等. 微滴乳液聚合制备纳米SiO2/聚丙烯酸酯复合材料[J]. 复合材料学报, 2013, 30(5):29-33. doi: 10.3969/j.issn.1000-3851.2013.05.005

    QIU Shouji, YANG Lei, ZHANG Ya, et al. Nano-SiO2/polyacrylate composites were prepared by droplet emulsion polymerization[J]. Acta Materiae Compositae Sinica,2013,30(5):29-33(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.05.005
    [21] 夏兆旺, 卢志伟, 鞠福瑜, 等. 基于颗粒阻尼技术的海洋平台结构减振试验研究[J]. 船舶力学, 2021, 25(03): 370-374.

    XIA Zhaowang, LU Zhiwei, JU Fuyu, et al. Experimental study on vibration reduction of offshore platform structures based on particle damping technology [J]. Ship mechanics, 2021, 25(03): 370-374(in Chinese).
    [22] VEERAMUTHUVEL P, SAIRAJAN K K, SHANKAR K. Vibration suppression of printed circuit boards using an external particle damper[J]. Journal of Sound and Vibration, 2016, 366: 98-116.
    [23] YU L H, HAO G Z, GU J J, et al. Fe3O4/PS magnetic nanoparticles: synthesis, characterization and their application as sorbents of oil from waste water[J]. Journal of Magnetism and Magnetic Materials,2015,394:14-21. doi: 10.1016/j.jmmm.2015.06.045
    [24] BAHARVAND H. A new method for preparation of magnetic polymer particles[J]. Colloid and Polymer Science,2014,292(12):3311-3318. doi: 10.1007/s00396-014-3386-6
    [25] 张和鹏, 张秋禹, 张宝亮, 等. 内部结构不对称磁性复合微球的制备及其影响因素探究[J]. 化学学报, 2012, 70(3): 345-351.

    ZHANG Hepeng, ZHANG Qiuyu, ZHANG Baoliang, et al. Preparation of asymmetric magnetic composite microspheres with internal structure and its influencing factors [J]. Acta Chemica Sinica, 2012, 70(3): 345-351(in Chinese).
    [26] WANG T T, LI W P, LUO L, et al. Ultrahigh dielectric constant composites based on the oleic acid modified ferroferric oxide nanoparticles and polyvinylidene fluoride[J]. Applied Physics Letters,2013,102(9):092904. doi: 10.1063/1.4795128
    [27] 孙轶男, 刘婷婷, 杨天水, 等. 交联单体种类及其用量对丙烯酸酯乳胶聚合行为的影响[J]. 涂料工业, 2022, 52(6):35-40. doi: 10.12020/j.issn.0253-4312.2022.6.35

    SUN Yinan, LIU Tingting, YANG Tianshui, et al. Effects of types and amounts of crosslinking monomers on polymerization behavior of acrylate latex[J]. Coatings Industry,2022,52(6):35-40(in Chinese). doi: 10.12020/j.issn.0253-4312.2022.6.35
    [28] 徐海燕, 任嗣利, 贾卫红, 等. 磁性可回收氟化石墨烯破乳材料的制备及乳液分离性能[J]. 高等学校化学学报, 2019, 40(3):508-517. doi: 10.7503/cjcu20180559

    XU Haiyan, REN Sili, JIA Weihong, et al. Preparation of magnetic recyclable fluorinated graphene demulsification material and its emulsion separation performance[J]. Chemical Journal of Chinese Universities,2019,40(3):508-517(in Chinese). doi: 10.7503/cjcu20180559
    [29] WANG T, Chen S, Wang Q, et al. Damping analysis of polyurethane/epoxy graft interpenetrating polymer network composites filled with short carbon fiber and micro hollow glass bead[J]. Materials & Design,2010,31(8):3810-3815.
  • 加载中
计量
  • 文章访问数:  82
  • HTML全文浏览量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-02
  • 修回日期:  2023-04-10
  • 录用日期:  2023-04-19
  • 网络出版日期:  2023-05-06

目录

    /

    返回文章
    返回