留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢纤维再生混凝土三轴受压力学性能试验

陈宇良 吉云鹏 陈宗平 叶培欢 吴辉琴

陈宇良, 吉云鹏, 陈宗平, 等. 钢纤维再生混凝土三轴受压力学性能试验[J]. 复合材料学报, 2022, 39(8): 4005-4016. doi: 10.13801/j.cnki.fhclxb.20210903.006
引用本文: 陈宇良, 吉云鹏, 陈宗平, 等. 钢纤维再生混凝土三轴受压力学性能试验[J]. 复合材料学报, 2022, 39(8): 4005-4016. doi: 10.13801/j.cnki.fhclxb.20210903.006
CHEN Yuliang, JI Yunpeng, CHEN Zongping, et al. Experiment on mechanical properties of steel fiber recycled aggregate concrete under triaxial compression[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4005-4016. doi: 10.13801/j.cnki.fhclxb.20210903.006
Citation: CHEN Yuliang, JI Yunpeng, CHEN Zongping, et al. Experiment on mechanical properties of steel fiber recycled aggregate concrete under triaxial compression[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4005-4016. doi: 10.13801/j.cnki.fhclxb.20210903.006

钢纤维再生混凝土三轴受压力学性能试验

doi: 10.13801/j.cnki.fhclxb.20210903.006
基金项目: 国家自然科学基金(51908141);中国博士后科学基金(2021M693854);广西科技基地和人才专项(AD19110068);广西高校中青年教师科研基础能力提升项目(2019KY0361);广西重点实验室开放课题项目(2019ZDK038)
详细信息
    通讯作者:

    陈宗平,博士,教授,博士生导师,研究方向为再生混凝土结构、钢-混凝土组合结构  E-mail: zpchen@gxu.edu.cn

  • 中图分类号: TU528

Experiment on mechanical properties of steel fiber recycled aggregate concrete under triaxial compression

  • 摘要: 为了研究钢纤维再生混凝土(SFRAC)的三轴受压力学性能,以侧向围压、再生骨料取代率和钢纤维体积掺量为参数,设计了168个圆柱体试件进行常规三轴受压试验。试验观察了SFRAC的破坏形态,获取了应力-应变全曲线、峰值应力、峰值应变、弹性模量等重要指标,深入分析了不同变化参数对其力学性能的影响规律。结果表明,三轴受压下试件主要发生斜向劈裂破坏;随着围压值增大,应力-应变曲线峰部抬高,下降段变缓,峰值应力、峰值应变和弹性模量均显著增大;钢纤维可提高试件单轴受压时的残余强度,使其应力-应变曲线的下降段变缓;再生骨料取代率增加,试件的峰值应力与弹性模量降低,峰值应变增大;三轴受压状态下,钢纤维对SFRAC的峰值应力影响不大,钢纤维体积分数为1vol%时对SFRAC变形性能的改性效果最优。最后,提出了SFRAC三向受压时峰值应力、峰值应变及弹性模量的计算公式。

     

  • 图  1  加载装置与试件受力模型

    Figure  1.  Loading device and schematic of loading model

    σ1—Axial stress

    图  2  部分SFRAC试件的破坏形态

    Figure  2.  Failure patterns of part SFRAC specimens

    图  3  SFRAC试件应力-应变曲线

    Figure  3.  Stress-strain curves of SFRAC specimens

    图  4  SFRAC峰值应力与围压的关系

    Figure  4.  Relationship between peak stress of SFRAC and confining pressure

    σv—Peak stress under triaxial compression; σ0—Peak stress under uniaxial compression

    图  5  取代率对SFRAC峰值应力的影响

    Figure  5.  Influence of replacement rate on peak stress of SFRAC

    图  6  钢纤维掺量对SFRAC峰值应力的影响

    Figure  6.  Influence of steel fiber content on peak stress of SFRAC

    σv, Vs=xvol%(x=0, 0.5, 1, 1.5)—Peak stress when steel fiber content is xvol%

    图  7  SFRAC峰值应变与围压的关系

    Figure  7.  Relationship between peak strain of SFRAC and confining pressure

    εv—Peak strain under triaxial compression; ε0—Peak strain under uniaxial compression

    图  8  取代率与SFRAC峰值应变的关系

    Figure  8.  Relationship between peak strain of SFRAC and replacement rate

    图  9  归一化的SFRAC峰值应变

    Figure  9.  Normalized peak strain of SFRAC

    εv—Peak strain; εv, Vs=xvol%—Peak strain when steel fiber content is xvol%

    图  10  SFRAC弹性模量与围压的关系

    Figure  10.  Relationship between elastic modulus of SFRAC and confining pressure

    E—Elastic modulus under triaxial compression; E0—Elastic modulus under uniaxial compression

    图  11  取代率对SFRAC弹性模量的影响

    Figure  11.  Influence of replacement rate on elastic modulus of SFRAC

    图  12  钢纤维掺量对SFRAC弹性模量的影响

    Figure  12.  Influence of steel fiber content on the elastic modulus of SFRAC

    表  1  钢纤维物理指标

    Table  1.   Physical indexes of steel fiber

    Steel fiberDensity/(g·cm−3)Length/mmDiameter/mmAspect ratioTensile strength/MPa
    7.85 37 0.9 41.1 ≥1150
    下载: 导出CSV

    表  2  粗骨料物理性质

    Table  2.   Properties of coarse aggregate

    AggregateWater
    absorption/%
    Moisture content/%Bulk density/(kg·m−3)Apparent density/(kg·m−3)Crush
    index/%
    Size/mm
    NA 0.43 0.07 1499.9 2703.9 17.15 5-20
    RA 5.35 1.55 1321.3 2599.6 25.63 5-20
    Notes: NA—Natural coarse aggregate; RA—Recycled coarse aggregate.
    下载: 导出CSV

    表  3  混凝土配合比

    Table  3.   Mixture ratio of concrete

    Strength gradeγ/wt%C/(kg·m−3)S/(kg·m−3)NA/(kg·m−3)RA/(kg·m−3)W/(kg·m−3)Wa/(kg·m−3)
    C35 0 500 542 1153.0 0.0 215.0 0.0
    C35 30 500 542 807.1 345.9 215.0 7.5
    C35 50 500 542 576.5 576.5 215.0 12.5
    C35 70 500 542 345.9 807.1 215.0 17.5
    C35 100 500 542 0.0 1153.0 215.0 25.0
    Notes: γ—Replacement rate of recycled coarse aggregate; C—Cement content; S—Sand content; NA—Natural coarse aggregate content; RA—Recycled coarse aggregate content; W—Water content; Wa—Additional water content.
    下载: 导出CSV

    表  4  钢纤维再生混凝土(SFRAC)试件参数设计

    Table  4.   Parameters of steel fiber recycled aggregate concrete (SFRAC) specimens

    Specimen numberγ/wt%Vs/vol%σw/MPa
    1%SFRCA(0%)-0 MPa 0 1 0
    1%SFRCA(0%)-3 MPa 0 1 3
    1%SFRCA(0%)-6 MPa 0 1 6
    1%SFRCA(0%)-9 MPa 0 1 9
    1%SFRCA(0%)-15 MPa 0 1 15
    1%SFRCA(0%)-21 MPa 0 1 21
    1%SFRCA(0%)-27 MPa 0 1 27
    1%SFRCA(30%)-0 MPa 30 1 0
    1%SFRCA(30%)-3 MPa 30 1 3
    1%SFRCA(30%)-6 MPa 30 1 6
    1%SFRCA(30%)-9 MPa 30 1 9
    1%SFRCA(30%)-15 MPa 30 1 15
    1%SFRCA(30%)-21 MPa 30 1 21
    1%SFRCA(30%)-27 MPa 30 1 27
    1%SFRCA(50%)-0 MPa 50 1 0
    1%SFRCA(50%)-3 MPa 50 1 3
    1%SFRCA(50%)-6 MPa 50 1 6
    1%SFRCA(50%)-9 MPa 50 1 9
    1%SFRCA(50%)-15 MPa 50 1 15
    1%SFRCA(50%)-21 MPa 50 1 21
    1%SFRCA(50%)-27 MPa 50 1 27
    1%SFRCA(70%)-0 MPa 70 1 0
    1%SFRCA(70%)-3 MPa 70 1 3
    1%SFRCA(70%)-6 MPa 70 1 6
    1%SFRCA(70%)-9 MPa 70 1 9
    1%SFRCA(70%)-15 MPa 70 1 15
    1%SFRCA(70%)-21 MPa 70 1 21
    1%SFRCA(70%)-27 MPa 70 1 27
    1%SFRCA(100%)-0 MPa 100 1 0
    1%SFRCA(100%)-3 MPa 100 1 3
    1%SFRCA(100%)-6 MPa 100 1 6
    1%SFRCA(100%)-9 MPa 100 1 9
    1%SFRCA(100%)-15 MPa 100 1 15
    1%SFRCA(100%)-21 MPa 100 1 21
    1%SFRCA(100%)-27 MPa 100 1 27
    0%SFRCA(100%)-0 MPa 100 0 0
    0%SFRCA(100%)-3 MPa 100 0 3
    0%SFRCA(100%)-6 MPa 100 0 6
    0%SFRCA(100%)-9 MPa 100 0 9
    0%SFRCA(100%)-15 MPa 100 0 15
    0%SFRCA(100%)-21 MPa 100 0 21
    0%SFRCA(100%)-27 MPa 100 0 27
    0.5%SFRCA(100%)-0 MPa 100 0.5 0
    0.5%SFRCA(100%)-3 MPa 100 0.5 3
    0.5%SFRCA(100%)-6 MPa 100 0.5 6
    0.5%SFRCA(100%)-9 MPa 100 0.5 9
    0.5%SFRCA(100%)-15 MPa 100 0.5 15
    0.5%SFRCA(100%)-21 MPa 100 0.5 21
    0.5%SFRCA(100%)-27 MPa 100 0.5 27
    1.5%SFRCA(100%)-0 MPa 100 1.5 0
    1.5%SFRCA(100%)-3 MPa 100 1.5 3
    1.5%SFRCA(100%)-6 MPa 100 1.5 6
    1.5%SFRCA(100%)-9 MPa 100 1.5 9
    1.5%SFRCA(100%)-15 MPa 100 1.5 15
    1.5%SFRCA(100%)-21 MPa 100 1.5 21
    1.5%SFRCA(100%)-27 MPa 100 1.5 27
    Notes: Vs—Volume fraction of steel fiber; σw—Confining pressure.
    下载: 导出CSV

    表  5  钢纤维分散效果

    Table  5.   Dispersion effect of steel fiber

    Volume fraction of steel fiber/vol%Group 1Group 2Group 3
    Design value 1 1 1
    Measured value 0.91 1.08 1.03
    下载: 导出CSV

    表  6  SFRAC特征点参数

    Table  6.   Characteristic point parameters of SFRAC

    Specimen numberσv/MPaεv/10−3E/GPa
    1%SFRCA(0%)-0 MPa 26.89 4.91 5.67
    1%SFRCA(0%)-3 MPa 58.10 8.43 7.89
    1%SFRCA(0%)-6 MPa 75.84 12.07 8.46
    1%SFRCA(0%)-9 MPa 89.64 16.76 8.84
    1%SFRCA(0%)-15 MPa 120.42 21.17 9.81
    1%SFRCA(0%)-21 MPa 141.20 24.90 11.23
    1%SFRCA(0%)-27 MPa 157.23 30.56 11.78
    1%SFRCA(30%)-0 MPa 26.47 5.03 5.33
    1%SFRCA(30%)-3 MPa 49.67 10.85 6.36
    1%SFRCA(30%)-6 MPa 72.42 14.47 7.63
    1%SFRCA(30%)-9 MPa 89.50 16.04 8.54
    1%SFRCA(30%)-15 MPa 111.41 23.94 8.87
    1%SFRCA(30%)-21 MPa 131.69 31.69 9.69
    1%SFRCA(30%)-27 MPa 152.11 40.73 10.62
    1%SFRCA(50%)-0 MPa 29.84 6.34 5.40
    1%SFRCA(50%)-3 MPa 56.42 9.48 7.94
    1%SFRCA(50%)-6 MPa 71.22 12.79 8.55
    1%SFRCA(50%)-9 MPa 83.48 18.29 8.51
    1%SFRCA(50%)-15 MPa 106.71 25.06 9.02
    1%SFRCA(50%)-21 MPa 122.29 35.46 9.20
    1%SFRCA(50%)-27 MPa 146.45 49.30 10.37
    1%SFRCA(70%)-0 MPa 23.44 5.19 4.95
    1%SFRCA(70%)-3 MPa 51.57 10.53 7.43
    1%SFRCA(70%)-6 MPa 67.08 15.43 8.43
    1%SFRCA(70%)-9 MPa 80.68 20.54 8.58
    1%SFRCA(70%)-15 MPa 100.79 28.22 8.94
    1%SFRCA(70%)-21 MPa 119.58 44.75 9.40
    1%SFRCA(70%)-27 MPa 142.17 56.16 9.82
    1%SFRCA(100%)-0 MPa 22.32 5.66 5.09
    1%SFRCA(100%)-3 MPa 54.35 10.15 7.16
    1%SFRCA(100%)-6 MPa 67.42 13.75 7.83
    1%SFRCA(100%)-9 MPa 78.97 18.36 8.53
    1%SFRCA(100%)-15 MPa 98.34 33.12 8.74
    1%SFRCA(100%)-21 MPa 118.30 52.35 8.95
    1%SFRCA(100%)-27 MPa 137.57 80.48 9.86
    0%SFRCA(100%)-0 MPa 25.89 5.01 5.20
    0%SFRCA(100%)-3 MPa 53.24 9.79 6.72
    0%SFRCA(100%)-6 MPa 66.13 15.12 7.24
    0%SFRCA(100%)-9 MPa 79.16 19.42 8.61
    0%SFRCA(100%)-15 MPa 99.35 28.35 9.28
    0%SFRCA(100%)-21 MPa 118.13 41.36 10.23
    0%SFRCA(100%)-27 MPa 137.32 69.65 10.25
    0.5%SFRCA(100%)-0 MPa 26.51 5.01 4.76
    0.5%SFRCA(100%)-3 MPa 54.84 11.90 6.66
    0.5%SFRCA(100%)-6 MPa 70.77 13.35 8.23
    0.5%SFRCA(100%)-9 MPa 81.85 16.86 8.65
    0.5%SFRCA(100%)-15 MPa 101.79 25.64 9.49
    0.5%SFRCA(100%)-21 MPa 119.85 40.15 9.66
    0.5%SFRCA(100%)-27 MPa 138.18 61.12 9.88
    1.5%SFRCA(100%)-0 MPa 26.05 5.35 5.29
    1.5%SFRCA(100%)-3 MPa 52.53 10.07 7.29
    1.5%SFRCA(100%)-6 MPa 67.79 14.64 8.15
    1.5%SFRCA(100%)-9 MPa 81.72 17.81 8.70
    1.5%SFRCA(100%)-15 MPa 101.78 32.57 8.83
    1.5%SFRCA(100%)-21 MPa 119.60 49.84 9.24
    1.5%SFRCA(100%)-27 MPa 138.72 63.65 9.81
    Notes: σv—Peak stress; εv—Peak strain; E—Elastic modulus.
    下载: 导出CSV
  • [1] SALMAN R M, AHMAD K R. Effect of biomineralization technique on the strength and durability characteristics of recycled aggregate concrete[J]. Construction and Building Materials,2021,290:123280.
    [2] LI B, WANG Y, JIN Q, et al. Liquefaction characteristics of recycled concrete aggregates[J]. Soil Dynamics and Earthquake Engineering, 2019, 120: 85-96.
    [3] 范玉辉, 牛海成, 张向冈. 再生混凝土徐变试验及老砂浆影响机理研究[J]. 建筑材料学报, 2020, 23(3):596-602.

    FAN Y H, NIU H C, ZHANG X G. Study on creep test of recycled coarse aggregate concrete and influence mecha-nism of old mortar[J]. Journal of Building Materials,2020,23(3):596-602(in Chinese).
    [4] 刘清, 韩风霞, 于广明, 等. 再生粗骨料自密实混凝土基本力学性能[J]. 建筑材料学报, 2020, 23(5):1053-1060. doi: 10.3969/j.issn.1007-9629.2020.05.009

    LIU Q, HAN F X, YU G M, et al. Basic mechanical properties of recycled coarse aggregate self compacting concrete[J]. Journal of Building Materials,2020,23(5):1053-1060(in Chinese). doi: 10.3969/j.issn.1007-9629.2020.05.009
    [5] 史才军, 曹芷杰, 谢昭彬. 再生混凝土力学性能的研究进展[J]. 材料导报, 2016, 30(23):96-103, 126.

    SHI C J, CAO Z J, XIE Z B. Research progress in the mecha-nical properties of recycled aggregate concrete[J]. Materials Reports,2016,30(23):96-103, 126(in Chinese).
    [6] 陈宇良, 刘杰, 吴辉琴, 等. 直剪作用下再生混凝土力学性能及强度指标换算[J]. 复合材料学报, 2021, 38(11): 3962-3970.

    CHEN Y L, LIU J, WU H Q, et al. Mechanical properties and strength index conversion of recycled aggregate concrete under direct shear[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3962-3970(in Chinese).
    [7] 孙道胜, 李泽英, 刘开伟, 等. 再生粗骨料的形态及缺陷对再生混凝土干燥收缩和力学性能的影响[J]. 材料导报, 2021, 35(11): 11027-11033, 11056.

    SUN D S, LI Z Y, LIU K W, et al. Influence of shapes and defects in recycled aggregate on drying shrinkage and mecha-nical properties of recycled aggregate concrete[J]. Mater-ials Reports, 2021, 35(11): 11027-11033, 11056(in Chinese).
    [8] ZHU H B, HAN B, ZHANG N. Effect of polypropylene fiber content on compressive and flexural performance of recycled concrete[J]. Journal of Physics Conference Series,2020,1605:012146. doi: 10.1088/1742-6596/1605/1/012146
    [9] HUANG M, ZHAO Y R, WANG H N, et al. Mechanical pro-perties test and strength prediction on basalt fiber reinforced recycled concrete[J]. Advances in Civil Engineering,2021,2021:1-10.
    [10] 高丹盈, 景嘉骅, 周潇. 混杂纤维增强再生砖骨料混凝土增强机制与抗压性能计算方法[J]. 复合材料学报, 2018, 35(12):3441-3449.

    GAO D Y, JING J H, ZHOU X. Reinforcing mechanism and calculation method of compressive behavior of hybrid fiber reinforced recycled brick aggregates concrete[J]. Acta Materiae Compositae Sinica,2018,35(12):3441-3449(in Chinese).
    [11] 丁亚红, 郭书奇, 张向冈, 等. 玄武岩纤维对再生混凝土抗碳化性能的影响[J]. 复合材料学报, 2022, 39(3): 1228-1238.

    DING Y H, GUO S Q, ZHANG X G, et al. Influence of basalt fiber on the anti-carbonation performance of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1228-1238(in Chinese).
    [12] 叶艳霞, 王宗彬, 谢夫林, 等. 钢纤维增强高强轻骨料混凝土的力学性能[J]. 建筑材料学报, 2021, 24(1):63-70. doi: 10.3969/j.issn.1007-9629.2021.01.009

    YE Y X, WANG Z B, XIE F L, et al. Mechanical properties of steel fiber reinforced high-strength lightweight aggregate concrete[J]. Journal of Building Materials,2021,24(1):63-70(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.01.009
    [13] 海然, 刘盼, 杨艳蒙, 等. 钢纤维增强粉煤灰自密实混凝土力学性能[J]. 建筑材料学报, 2021, 24(1):87-92. doi: 10.3969/j.issn.1007-9629.2021.01.012

    HAI R, LIU P, YANG Y M, et al. Mechanical properties of steel fiber reinforced fly ash self-compacting concrete[J]. Journal of Building Materials,2021,24(1):87-92(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.01.012
    [14] 杨娟, 朋改非. 钢纤维类型对超高性能混凝土高温爆裂性能的影响[J]. 复合材料学报, 2018, 35(6):1599-1608.

    YANG J, PENG G F. Influence of different types of steel fiber on explosive spalling behavior of ultra-high perfor-mance concrete exposed to high temperature[J]. Acta Materiae Compositae Sinica,2018,35(6):1599-1608(in Chinese).
    [15] 薛国杰, 王传林, 张佳苗, 等. 钢纤维形状对高性能混凝土性能的影响[J]. 复合材料学报, 2021, 38(12): 4313-4324.

    XUE G J, WANG C L, ZHANG J M, et al. Influence of steel fiber shape on the performance of high-performance concrete[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4313-4324(in Chinese).
    [16] 高丹盈, 朱倩, 刘杰. 单轴受压下钢纤维再生骨料混凝土本构模型[J]. 应用基础与工程科学学报, 2020, 28(2):396-406.

    GAO D Y, ZHU Q, LIU J. Constitutive model of SFRCAC under uniaxial compression[J]. Journal of Basic Science and Engineering,2020,28(2):396-406(in Chinese).
    [17] GAO D Y, LI W B, PANG Y Y, et al. Behavior analysis and strength prediction of steel fiber reinforced recycled aggregate concrete column under axial compression[J]. Construction and Building Materials,2021,290:123278.
    [18] 罗素蓉, 林扬兴, 肖建庄. 钢-PVA混杂纤维高强再生骨料混凝土断裂性能[J]. 建筑结构学报, 2020, 41(12):93-102.

    LUO S R, LIN Y X, XIAO J Z. Fracture behaviors of hybrid steel-PVA fiber reinforce high strength recycled aggregate concrete[J]. Journal of Building Structures,2020,41(12):93-102(in Chinese).
    [19] 孔祥清, 何文昌, 邢丽丽, 等. 钢纤维-聚丙烯纤维混杂对再生混凝土抗冲击性能的影响[J]. 复合材料学报, 2020, 37(7):1763-1773.

    KONG X Q, HE W C, XING L L, et al. Effect of steel fiber-polypropylene fiber hybrid additon on impact resistance of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica,2020,37(7):1763-1773(in Chinese).
    [20] RAMESH R B, MIRZA O, KANG W H. Mechanical properties of steel fiber reinforced recycled aggregate concrete[J]. Structural Concrete, 2019, 20(2): 745-755.
    [21] 陈宗平, 陈宇良, 姚侃. 再生混凝土三轴受压力学性能试验及其影响因素[J]. 建筑结构学报, 2014, 35(12):72-81.

    CHEN Z P, CHEN Y L, YAO K. Experimental research on mechanical behavior and influence factor of recycled coarse aggregate concretes under triaxial compression[J]. Journal of Building Structures,2014,35(12):72-81(in Chinese).
    [22] CHEN Y L, CHEN Z P, XU J, et al. Performance evaluation of recycled aggregate concrete under multiaxial compression[J]. Construction and Building Materials,2019,229:116935. doi: 10.1016/j.conbuildmat.2019.116935
    [23] 朋改非, 黄艳竹, 张九峰. 骨料缺陷对再生混凝土力学性能的影响[J]. 建筑材料学报, 2012, 15(1):80-84. doi: 10.3969/j.issn.1007-9629.2012.01.015

    PENG G F, HUANG Y Z, ZHANG J F. Influence of defects in recycled aggregate on mechanical properties of recycled aggregate concrete[J]. Journal of Building Materials,2012,15(1):80-84(in Chinese). doi: 10.3969/j.issn.1007-9629.2012.01.015
    [24] 陈春红, 刘荣桂, 朱平华. 粘附砂浆含量对再生混凝土抗氯离子侵蚀性能影响[J]. 建筑材料学报, 2021, 24(6): 1216-1223.

    CHEN C H, LIU R G, ZHU P H. Effect of attached mortar content on chloride ion erosion resistance of recycled concrete[J]. Journal of Building Materials, 2021, 24(6): 1216-1223(in Chinese).
    [25] 王震, 王新杰, 朱平华, 等. 基于力学性能的吸附砂浆界限含量分析[J]. 建筑材料学报, 2021, 24(3):483-491. doi: 10.3969/j.issn.1007-9629.2021.03.006

    WANG Z, WANG X J, ZHU P H, et al. Limit content analysis of adhesion mortar based on mechanical properties[J]. Journal of Building Materials,2021,24(3):483-491(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.03.006
    [26] THOMAS J, THAICKAVIL N N, WILSON P M. Strength and durability of concrete containing recycled concrete aggre-gates[J]. Journal of Building Engineering,2018,19(11):349-365.
    [27] UYGUNOGLU T. Effect of fiber type and content on bleeding of steel fiber reinforced concrete[J]. Construction and Building Materials,2011,25(2):766-772. doi: 10.1016/j.conbuildmat.2010.07.008
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  1055
  • HTML全文浏览量:  468
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-16
  • 修回日期:  2021-08-17
  • 录用日期:  2021-08-19
  • 网络出版日期:  2021-09-06
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回