留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锌@聚吡咯/织物电极的制备与性能

聂文琪 许帅 孙江东 储长流 徐珍珍

聂文琪, 许帅, 孙江东, 等. 锌@聚吡咯/织物电极的制备与性能[J]. 复合材料学报, 2021, 39(0): 1-11
引用本文: 聂文琪, 许帅, 孙江东, 等. 锌@聚吡咯/织物电极的制备与性能[J]. 复合材料学报, 2021, 39(0): 1-11
Wenqi Nie, Shuai Xu, Jiangdong Sun, Changliu Chu, Zhenzhen Xu. Preparation and performance of Zinc@Polypyrrole fabric batteries[J]. Acta Materiae Compositae Sinica.
Citation: Wenqi Nie, Shuai Xu, Jiangdong Sun, Changliu Chu, Zhenzhen Xu. Preparation and performance of Zinc@Polypyrrole fabric batteries[J]. Acta Materiae Compositae Sinica.

锌@聚吡咯/织物电极的制备与性能

基金项目: 省部共建生物多糖纤维成形与生态纺织国家重点实验室(青岛大学)开放课题资助项目(KF2020210);安徽省自然科学基金(2008085QE213);安徽工程大学开放课题(Xjky2020038)
详细信息
    通讯作者:

    聂文琪,博士研究生,讲师,研究方向为可穿戴产储能器件及传感器 E-mail: wenqinie@163.com

    徐珍珍,博士研究生,教授,研究方向纺织复合材料及柔性储能器件 E-mail: xuzhenzhen@ahpu.edu.cn

  • 中图分类号: TB34

Preparation and performance of Zinc@Polypyrrole fabric batteries

  • 摘要: 为满足可穿戴智能纺织品微电子功能元件的供能需求,柔性储能器件成为研究的重点。电极是储能器件重要组成部分,决定了器件能量存储的大小。本文以导电镀银锦纶织物为基体,采用磁控溅射技术将金属锌(Zn)负载在织物表面,再通过化学聚合和电化学聚合两种方式构筑导电高分子聚吡咯(PPy)。分别对Zn@PPy/织物电极的表观形貌、电学性能和电化学性能进行评价,并探究化学聚合和电化学聚合PPy及磁控溅射时间对织物电极性能的影响。结果表明:采用磁控溅射镀技术可在织物表面实现Zn膜的均匀生长,表面方阻为1.51 Ω;制备的Zn@PPy/织物电极比电容高达1185 mF/cm2,是PPy/织物电极的4.21倍。该织物电极制备方法简单,在可穿戴纺织品微电子供能领域具有潜在的应用前景。

     

  • 图  1  (a)镀银锦纶织物织造;(b)磁控溅射;(c) 锌@聚吡咯(Zn@PPy)/织物层状结构示意图

    Figure  1.  (a) Flexible substrate preparation; (b) Magnetron sputtering; (c) Schematic diagram of Zinc@Polypyrrole (Zn@PPy)/fabric laminate structure

    图  2  不同溅射时间Zn/织物电极的显微镜图片

    Figure  2.  Optical microscope figures of Zn/fabric electrodes with different sputtering times. (a) Magnetron sputtering 0.5 h; (b)Magnetron sputtering 1 h; (c) Magnetron sputtering 1.5 h

    图  3  Zn/织物电极磁控溅射锌的微观表征:(a~c) 1.5 h磁控溅射锌SEM;(d~f) EDS面扫图;(g~h) 0.5 h磁控溅射锌元素分布;(i) 1.5 h磁控溅射锌图谱

    Figure  3.  Microscopic characterization of Zn/fabric electrodes magnetron sputtered zinc. (a~c) SEM of 1.5 h magnetron sputtered zinc; (d~f) EDS surface sweep; (g~h) 0.5 h magnetron sputtered zinc elemental distribution; (i) 1.5 h magnetron sputtered zinc EDS spectrum

    图  4  不同溅射时间Zn/织物电极的电阻

    Figure  4.  Resistance of Zn/fabric electrodes at different sputtering times

    图  5  Zn/织物电极的电化学性能曲线:(a) 镀银锦纶CV;(b) 磁控溅射0.5 h; (c) 磁控溅射1 h; (d) 磁控溅射1.5 h; (e) 20 mV扫速的不同沉积时间CV对比;(f) EIS对比

    Figure  5.  Electrochemical performance curve of Zn/fabric electrodes: (a) CV comparison of siver-plated PA; (b) Magnetron sputtering 0.5 h; (c) Magnetron sputtering 1 h; (d) Magnetron sputtering 1.5 h; (e) Comparison CV with different magnetron sputtering time of 20 mV sweep speed; (f) Comparison of EIS

    图  6  C-PPy/织物电极和E-PPy/织物电极的SEM图像

    Figure  6.  Optical microscope figures of C-PPy/ fabric electrodes and E-PPy/ fabric electrodes. (a) Silver-plated nylon; (b) E-PPy; (c) C-PPy

    图  7  C-PPy/织物电极和E-PPy/织物电极的电化学性能曲线 (a) C-PPy/织物电极不同扫速CV;(b) C-PPy/织物电极和E-PPy/织物电极CV对比

    Figure  7.  Electrochemical performance curve of C-PPy /fabric electrodes and E-PPy/ fabric electrodes. (a) Different CV sweep speed of C-PPy/fabric electrodes; (b) Comparison of C-PPy and E-PPy

    图  8  Zn@PPy/织物电极微观性能表征: (a~b)Zn@PPy/织物电极SEM;(c)红外光图谱;(d~f)EDS元素分布

    Figure  8.  Characterization of microscopic properties of Zn@PPy/fabric electrode: (a~b) SEM of Zn@PPy/fabric; (c)FT-IR spectra; (d~f) EDS element distribution.

    图  9  Zn/织物电极、Zn@PPy/织物电极及C-PPy/织物电极电阻对比

    Figure  9.  Comparison of the resistance of Zn/fabric electrodes and Zn@PPy/fabric electrodes and C-PPy/ fabric electrodes

    图  10  Zn@PPy/织物电极的电化学性能 (a)Zn@PPy/织物电极不同扫速CV;(b)不同织物电极CV对比;(c) Zn@PPy/织物电极EIS;(d)不同织物电极比电容;(e) Zn@PPy/织物电极GCD

    Figure  10.  Electrochemical performance curve of Zn@PPy/fabric electrodes. (a) Different scan rate of Zn@PPy/fabric electrodes; (b) Comparison of CV of different fabric electrodes; (c) Zn@PPy/fabric electrodes EIS; (d) Different fabric electrode ratio capacitance; (e) Zn@PPy/fabric electrode GCD

  • [1] MARDONOVA M, CHOI Y, MARDONOVA M, et al. Review of wearable device technology and its applications to the mining industry. Energies [J]. 2018, 11 (3): 547.
    [2] PAL D, TASSANAVIBOON A, ARPNIKANONDT C, et al. Quality of experience of smart-wearables: from fitness-bands to smartwatches[J]. IEEE Consumer Electronics Magazine,2019,9(1):49-53.
    [3] POLAT E O. Seamlessly integrable optoelectronics for clinical grade wearables[J]. Advanced Materials Technologies,2021,6(3):2000853. doi: 10.1002/admt.202000853
    [4] XIA X, TU J, ZHANG Y, et al. Porous hydroxide nanosheets on preformed nanowires by electrodeposition: branched nanoarrays for electrochemical energy storage[J]. Chemistry of Materials,2012,24(19):3793-3799. doi: 10.1021/cm302416d
    [5] WENG W, LIN H, CHEN X, et al. Flexible and stable lithium ion batteries based on three-dimensional aligned carbon nanotube/silicon hybrid electrodes[J]. Journal of Materials Chemistry A,2014,2(24):9306-9312. doi: 10.1039/c4ta00711e
    [6] SINGH N, GALANDE C, MIRANDA A, et al. Paintable battery[J]. Scientific reports,2012,2(1):1-5.
    [7] 李红洁, 左武升, 凌嘉杰, 等. 导电高分子在柔性超级电容器中的应用进展[J]. 天津化工, 2021, 35(2):32-34. doi: 10.3969/j.issn.1008-1267.2021.02.012

    LI Hongjie, ZUO Wusheng, LING Jiajie, et al. Advances in the application of conductive polymers in flexible supercapacitors[J]. Tianjin Chemicals,2021,35(2):32-34(in Chinese). doi: 10.3969/j.issn.1008-1267.2021.02.012
    [8] HEEGER A J. Semiconducting and metallic polymers: the fourth generation of polymeric materials[J]. 2001, 40(14): 8475-8491
    [9] WANG M, WANG X, YAO Z, et al. SnO2 nanoflake arrays coated with polypyrrole on a carbon cloth as flexible anodes for sodium-ion batteries[J]. ACS Appl Mater Interfaces,2019,11(27):24198-24204. doi: 10.1021/acsami.9b08378
    [10] ZHANG B, XU Y, WANG J, et al. All-in-one stainless-steel mesh oxide composites anode for flexible Li-ion battery[J]. Advanced Materials Technologies,2020,5(10):2000376. doi: 10.1002/admt.202000376
    [11] FU J, LEE D U, HASSAN F M, et al. Flexible high-energy polymer-electrolyte-based rechargeable zinc-air batteries[J]. Advanced Materials,2015,27(37):5617-5622. doi: 10.1002/adma.201502853
    [12] FU J, HASSAN F M, LI J, et al. Flexible rechargeable zinc-air batteries through morphological emulation of human hair array[J]. Advanced Materials,2016,28(30):6421-6428. doi: 10.1002/adma.201600762
    [13] ZENG Y, ZHANG X, MENG Y, et al. Achieving ultrahigh unergy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery[J]. Advanced Materials,2017,29(26):1700274. doi: 10.1002/adma.201700274
    [14] YU W, SHANG W, XIAO X, et al. Achieving a stable zinc electrode with ultralong cycle life by implementing a flowing electrolyte[J]. Journal of Power Sources,2020,453:227856. doi: 10.1016/j.jpowsour.2020.227856
    [15] TOMAEV V V, POLISHCHUK V A, VARTANYAN T A, et al. Surface plasmon resonance in zinc nanoparticles[J]. GLASS PHYSICS AND CHEMISTRY,2019,45(3):238-241. doi: 10.1134/S1087659619030155
    [16] 于雪云. 简述循环伏安法实验技术的应用[J]. 德州学院学报, 2012, 28(S1):204-205.

    YU Xueyun. A brief description of the application of cyclic voltammetry experimental technique[J]. Journal of Dezhou College,2012,28(S1):204-205(in Chinese).
    [17] ZHU Y, CAO C, TAO S, et al. Ultrathin nickel hydroxide and oxide nanosheets: synthesis, characterizations and excellent supercapacitor performances[J]. Scientific reports,2014,4(1):1-7.
    [18] MENG J, NIE W, ZHANG K, et al. Enhancing electrochemical performance of graphene fiber-based supercapacitors by plasma treatment[J]. ACS Appl Mater Interfaces,2018,10(16):13652-13659. doi: 10.1021/acsami.8b04438
    [19] ARAT R, JIA G, DELLITH J, et al. Solution processed transparent conductive hybrid thin films based on silver nanowires, zinc oxide and graphene[J]. Materials Today Communications,2021,26:102162. doi: 10.1016/j.mtcomm.2021.102162
    [20] ALLISON A, ANDREAS H A. Minimizing the Nyquist-plot semi-circle of pseudocapacitive manganese oxides through modification of the oxide-substrate interface resistance[J]. Journal of power sources,2019,426(JUN.30):93-96.
    [21] LV J, ZHANG L, ZHONG Y, et al. High-performance polypyrrole coated knitted cotton fabric electrodes for wearable energy storage[J]. Organic Electronics,2019,74(Nov):59-68.
    [22] CHEN S, WANG L, HUANG M, et al. Reduced graphene oxide/Mn3O4 nanocrystals hybrid fiber for flexible all-solid-state supercapacitor with excellent volumetric energy density[J]. Electrochimica Acta,2017,242:10-18. doi: 10.1016/j.electacta.2017.05.013
    [23] NIU Q, GUO Y, GAO K, et al. Polypyrrole/cellulose nanofiber aerogel as a supercapacitor electrode material[J]. RSC advances,2016,6(110):109143-109149. doi: 10.1039/C6RA23216G
    [24] MA·HMOUDIAN M R, ALIAS Y, BASIRUN W J, et al. Synthesis and characterization of zinc/polypyrrole nanotube as a protective pigment in organic coatings[J]. Metallurgical and Materials Transactions A,2013,44(7):3353-3363. doi: 10.1007/s11661-013-1686-y
  • 加载中
计量
  • 文章访问数:  124
  • HTML全文浏览量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-14
  • 录用日期:  2021-12-04
  • 修回日期:  2021-11-18
  • 网络出版日期:  2021-12-31

目录

    /

    返回文章
    返回