留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乳酸基聚磷酸酯改性复合材料的制备及其阻燃抑烟性能

杨华维 杨兴才 闵样 班大明

杨华维, 杨兴才, 闵样, 等. 聚乳酸基聚磷酸酯改性复合材料的制备及其阻燃抑烟性能[J]. 复合材料学报, 2023, 40(7): 3881-3891. doi: 10.13801/j.cnki.fhclxb.20220917.001
引用本文: 杨华维, 杨兴才, 闵样, 等. 聚乳酸基聚磷酸酯改性复合材料的制备及其阻燃抑烟性能[J]. 复合材料学报, 2023, 40(7): 3881-3891. doi: 10.13801/j.cnki.fhclxb.20220917.001
YANG Huawei, YANG Xingcai, MIN Yang, et al. Flame retardancy and smoke suppression of poly(lactic acid) composites modified by polyphosphate[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3881-3891. doi: 10.13801/j.cnki.fhclxb.20220917.001
Citation: YANG Huawei, YANG Xingcai, MIN Yang, et al. Flame retardancy and smoke suppression of poly(lactic acid) composites modified by polyphosphate[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3881-3891. doi: 10.13801/j.cnki.fhclxb.20220917.001

聚乳酸基聚磷酸酯改性复合材料的制备及其阻燃抑烟性能

doi: 10.13801/j.cnki.fhclxb.20220917.001
基金项目: 国家自然科学基金(51763005);贵阳市科技计划项目(筑科合同 [2021]1001号)
详细信息
    通讯作者:

    班大明,博士,教授,硕士生导师,研究方向为功能高分子材料 E-mail: bdaming@gznu.edu.cn

  • 中图分类号: O634.5;TB332

Flame retardancy and smoke suppression of poly(lactic acid) composites modified by polyphosphate

Funds: National Natural Science Foundation of China (51763005); Guiyang Science and Technology Planning Project ([2021]1001)
  • 摘要: 由于聚乳酸(PLA)极易燃烧,并伴有严重的熔滴现象,严重阻碍了在包装、汽车、电气和电子工业等诸多领域的应用,为解决此问题,以PLA为基体,聚苯氧基磷酸-2-10-氢-9-氧杂-磷杂菲基对苯二酚酯(POPP)为阻燃剂,采用熔融共混热压法制备了不同含量的阻燃PLA复合材料。通过极限氧指数(LOI)、垂直燃烧(UL-94)测试、热重分析(TG)和锥形量热等方法研究了PLA复合材料的阻燃性和抑烟性能。结果表明:当POPP的添加量为4wt%时,PLA复合材料的垂直燃烧可达到V-0级,极限氧指数为34.8%。与纯PLA相比,POPP/PLA-4的烟雾释放速率和总烟释放量分别下降了85.83%和77.65%,极大地改善了PLA材料的抑烟性能。此外,对锥形量热测试后的残炭微观结构和热降解行为分析表明,POPP在PLA燃烧过程中的阻燃机制以气相为主、凝聚相为辅。POPP热降解释放出•PO和•PO2自由基,与•H和•OH结合终止气相燃烧循环;在凝聚相中,POPP促进PLA分子间交联成炭,表面形成连续且致密的炭层,提高基材的阻燃性能。

     

  • 图  2  PLA复合材料在50 kW/m2下的锥形量热测试结果:(a) 热释放速率(HRR);(b) 总释放热(THR);(c) 烟雾释放速率(SPR);(d) 总烟释放量(TSP)

    Figure  2.  Cone calorimetric results of PLA composites at an external heat flux of 50 kW/m2 as a function of burning duration: (a) Heat release rate (HRR); (b) Total heat release (THR); (c) Smoke production rate (SPR); (d) Total smoke production (TSP)

    图  1  聚苯氧基磷酸-2-10-氢-9-氧杂-磷杂菲基对苯二酚酯 (POPP) 的合成

    Figure  1.  Synthesis route of poly(2-10-hydrogen-9-oxa-phosphaphenanthrene hydroquinone phenyl phosphate) (POPP)

    图  3  PLA复合材料的TG (a)和DTG (b)曲线

    Figure  3.  TG (a) and DTG (b) curves of PLA composites

    图  4  PLA复合材料锥形量热测试后残炭的照片:(a) PLA-0;(b) POPP/PLA-4

    Figure  4.  Digital photographs of residual char after cone calorimetric test of PLA composites: (a) PLA-0; (b) POPP/PLA-4

    图  5  POPP/PLA-4复合材料锥形量热测试后残炭的SEM图像

    Figure  5.  SEM images of residual char after cone calorimetric test of POPP/PLA-4 composite

    图  6  (a) PLA-0和POPP/PLA-4的XPS图谱;PLA-0 (b)和POPP/PLA-4 (c)的C1s XPS图谱;(d) POPP/PLA-4的P2p XPS图谱

    Figure  6.  (a) XPS spectra of PLA-0 and POPP/PLA-4; C1s XPS spectra of PLA-0 (b) and POPP/PLA-4 (c); (d) P2p XPS spectra of POPP/PLA-4

    图  7  PLA复合材料的拉曼光谱:(a) PLA-0;(b) POPP/PLA-4

    Figure  7.  Raman spectra of PLA composites: (a) PLA-0; (b) POPP/PLA-4

    ID/IG—Intensity ratio between peak D and peak G

    图  8  PLA-0 (a)和POPP/PLA-4 (b)的3D TG-FTIR图

    Figure  8.  3D TG-FTIR of PLA-0 (a) and POPP/PLA-4 (b)

    图  9  TG试验中纯PLA及其复合材料的FTIR图谱:(a) PLA-0;(b) POPP/PLA-4

    Figure  9.  FTIR spectra of volatile from pure PLA and its composites during TG test: (a) PLA-0; (b) POPP/PLA-4

    图  10  PLA复合材料的阻燃机制

    Figure  10.  Flame retardant mechanism for PLA composites

    表  1  聚乳酸(PLA)复合材料的配方及P含量

    Table  1.   Formulation and P contents of poly(lactic acid) (PLA) composites

    SamplePLA/wt%POPP/wt%P/wt%
    PLA-0 100 0 0.00
    POPP/PLA-1 99.5 0.5 0.07
    POPP/PLA-2 99 1 0.13
    POPP/PLA-3 98 2 0.27
    POPP/PLA-4 97 3 0.40
    POPP/PLA-5 96 4 0.54
    Note: POPP—Poly(2-10-hydrogen-9-oxa-phosphaphenanthrene hydroquinone phenyl phosphate).
    下载: 导出CSV

    表  2  PLA复合材料的阻燃测试结果

    Table  2.   Results of flame retardant performances for PLA composites

    SampleLimiting oxygen index/%DrippingCotton ignitedUL-94 rating
    PLA-016.3Heavy drippingYesNo rating
    POPP/PLA-124.0Heavy drippingYesV-2
    POPP/PLA-225.2Heavy drippingYesV-2
    POPP/PLA-326.2DrippingNoV-0
    POPP/PLA-429.8DrippingNoV-0
    POPP/PLA-534.8DrippingNoV-0
    下载: 导出CSV

    表  3  纯PLA和PLA复合材料的锥形量热数据

    Table  3.   Cone calorimetry data for pure PLA and PLA composites


    Sample
    TTI/sPk-HRR/
    (kW·m−2)
    THR/
    (MJ·m−2)
    SPR/
    (m2·s−1)
    TSP/
    (m2·m−2)
    Av-COY/
    (kg·kg−1)
    Av-EHC/
    (MJ·kg−1)
    FPI/
    (s·m2·kW−1)
    Residue/%
    PLA-043580.7115.30.12051.00.02314.10.074 0.7
    POPP/PLA-335571.9109.90.07926.50.03214.30.061 0.4
    POPP/PLA-431518.3 89.00.01711.40.04612.00.06015.5
    Notes: TTI—Time to ignition; Pk-HRR—Peak of heat release rate; Av-COY—Average of CO yield; Av-EHC—Average of effective heat of combustion; FPI—Fire performance index; THR—Total heat release ; SPR—Smoke production rate; TSP—Total smoke production.
    下载: 导出CSV

    表  4  氮气氛围下PLA复合材料的TG和DTG结果

    Table  4.   TG and DTG results under nitrogen atmosphere for PLA composites

    SampleT5%/℃T10%/℃T50%/℃Tmax/℃R600/%
    PLA-0338358383385 0.00
    POPP350389537493, 55132.90
    POPP/PLA-1339360385387 0.75
    POPP/PLA-2334358384386 0.66
    POPP/PLA-3321353381384 0.51
    POPP/PLA-4322352383386 0.71
    POPP/PLA-5319347382387 0.56
    Notes: Tx%—Temperature corresponding to mass loss xwt% of material; Tmax—Temperature corresponding to maximum thermal degradation rate; R600—Residue at 600℃.
    下载: 导出CSV

    表  5  纯PLA及复合材料的力学性能结果

    Table  5.   Test results of mechanical properties of pure PLA and its composites

    SampleImpact strength/(kJ·m−2)Elongation at break/%Tensile strength/MPa
    PLA-014.66$ \pm $0.507.22$ \pm $0.4031.81$ \pm $0.50
    POPP/PLA-111.10$ \pm $0.304.08$ \pm $0.3014.49$ \pm $0.40
    POPP/PLA-214.41$ \pm $0.205.31$ \pm $0.5016.57$ \pm $0.30
    POPP/PLA-312.56$ \pm $0.403.80$ \pm $0.3016.16$ \pm $0.30
    POPP/PLA-412.72$ \pm $0.305.13$ \pm $0.2022.08$ \pm $0.20
    POPP/PLA-5 8.41$ \pm $0.306.24$ \pm $0.5023.53$ \pm $0.40
    下载: 导出CSV
  • [1] HUANG D, HU Z D, LIU T Y, et al. Seawater degradation of PLA accelerated by water-soluble PVA[J]. e-Polymers,2020,20(1):759-772. doi: 10.1515/epoly-2020-0071
    [2] LIU T, JING J, ZHANG Y, et al. Synthesis of a novel polyphosphate and its application with APP in flame retardant PLA[J]. RSC Advances,2018,8(8):4483-4493. doi: 10.1039/C7RA12582H
    [3] ZHANG Y, XIONG Z, GE H, et al. Core-shell bioderived flame retardants based on chitosan/alginate coated ammonia polyphosphate for enhancing flame retardancy of polylactic acid[J]. ACS Sustainable Chemistry & Engineering,2020,8(16):6402-6412.
    [4] CICERO S, MARTINEZ-MATA V, CASTANON-JANO L, et al. Analysis of notch effect in the fracture behaviour of additively manufactured PLA and graphene reinforced PLA[J]. Theoretical and Applied Fracture Mechanics,2021,114:103032. doi: 10.1016/j.tafmec.2021.103032
    [5] LUYT A S, ANTUNES A, POPELKA A, et al. Effect of poly(ε-caprolactone) and titanium (IV) dioxide content on the UV and hydrolytic degradation of poly(lactic acid)/poly(ε-caprolactone) blends[J]. Journal of Applied Polymer Science,2021,138(43):51266. doi: 10.1002/app.51266
    [6] MAQSOOD M, LANGENSIEPEN F, SEIDE G. Investigation of melt spinnability of plasticized poly(lactic acid) biocomposites-containing intumescent flame retardant[J]. Journal of Thermal Analysis and Calorimetry,2019,139(1):305-318.
    [7] GONG W, FAN M, LOU J, et al. Effect of nickel phytate on flame retardancy of intumescent flame retardant polylactic acid[J]. Polymers for Advanced Technologies,2020,32(4):1548-1559.
    [8] LIMA E M B, OLIVEIRA R N, MIDDEA A, et al. Degradation of PLA biocomposites containing mango seed and organo montmorillonite minerals[J]. Journal of Natural Fibers,2022,19(5):1783-1791. doi: 10.1080/15440478.2020.1788488
    [9] MAQSOOD M, SEIDE G. Biodegradable flame retardants for biodegradable polymer[J]. Biomolecules,2020,10(7):1038. doi: 10.3390/biom10071038
    [10] CHENG X W, GUAN J P, TANG R C, et al. Improvement of flame retardancy of poly(lactic acid) nonwoven fabric with a phosphorus-containing flame retardant[J]. Journal of Industrial Textiles,2016,46(3):914-928. doi: 10.1177/1528083715606105
    [11] LEBEDEV S M, GEFLE O S, AMITOV E T, et al. Poly(lactic acid)-based polymer composites with high electric and thermal conductivity and their characterization[J]. Polymer Testing,2017,58:241-248. doi: 10.1016/j.polymertesting.2016.12.033
    [12] RAN S Y, FANG F, GOU Z H, et al. Synthesis of decorated graphene with P, N-containing compounds and its flame retardancy and smoke suppression effects on polylactic acid[J]. Composites Part B: Engineering,2019,170:41-50. doi: 10.1016/j.compositesb.2019.04.037
    [13] CHEN Y J, XU L F, WU X D, et al. The influence of nano ZnO coated by phosphazene/triazine bi-group molecular on the flame retardant property and mechanical property of intumescent flame retardant poly(lactic acid) composites[J]. Thermochimica Acta,2019,679:178336. doi: 10.1016/j.tca.2019.178336
    [14] YU S L, XIANG H X, ZHOU J L, et al. Enhanced flame-retardant performance of poly(lactic acid) (PLA) composite by using intrinsically phosphorus-containing PLA[J]. Progress in Natural Science: Materials International,2018,28(5):590-597. doi: 10.1016/j.pnsc.2018.09.002
    [15] WANG X X, HE W T, LONG L J, et al. A phosphorus- and nitrogen-containing DOPO derivative as flame retardant for poly(lactic acid) (PLA)[J]. Journal of Thermal Analysis and Calorimetry,2020,145(2):331-343.
    [16] YU S L, XIANG H X, ZHOU J L, et al. Preparation and characterization of fire resistant PLA fibers with phosphorus flame retardant[J]. Fibers and Polymers,2017,18(6):1098-1105. doi: 10.1007/s12221-017-6877-5
    [17] DUAN B R, WANG Q J, WANG X, et al. Flame retardance of leather with flame retardant added in retanning process[J]. Results in Physics,2019,15:102717. doi: 10.1016/j.rinp.2019.102717
    [18] WU N J, FU G L, YANG Y, et al. Fire safety enhancement of a highly efficient flame retardant poly(phenylphosphoryl phenylenediamine) in biodegradable poly(lactic acid)[J]. Journal of Hazardous Materials,2019,363:1-9. doi: 10.1016/j.jhazmat.2018.08.090
    [19] SIM M J, CHA S H. Efficient polymeric phosphorus flame retardant: Flame retardancy, thermal property, and physical property on polylactide[J]. Polymer Bulletin,2018,76(7):3463-3479.
    [20] 李霈, 付海, 赵欧, 等. 聚磷酸酯阻燃剂复配聚磷酸铵对环氧树脂阻燃性能的影响[J]. 高等学校化学学报, 2017, 38(2):294-302. doi: 10.7503/cjcu20160599

    LI Pei, FU Hai, ZHAO Ou, et al. Influence of polyphosphate flame retardant couple with ammonium polyphosphate on epoxy resin[J]. Chemical Journal of Chinese Universities,2017,38(2):294-302(in Chinese). doi: 10.7503/cjcu20160599
    [21] ASTM. Standard test method for measuring the minimum oxygen concentration to support candle-like combustion of plastics (oxygen index): ASTM D2863—97[S]. West Conshohocken: ASTM, 1997.
    [22] ASTM. Standard test method for measuring the comparative burning characteristics of solid plastics in a vertical position: ASTM D3801[S]. West Conshohocken: ASTM, 2013.
    [23] ISO. Reaction-to-fire tests—Heat release, smoke production and mass loss rate—Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement): ISO 5660-1: 2015[S]. Geneva: ISO, 2015.
    [24] 中国国家标准化管理委员会. 塑料拉伸性能的测定第2部分: 模塑和挤塑塑料的试验条件: GB/T 1040.2—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People's Republic of China. Plastics—Determination of tensile properties—Part 2: Test conditions for moulding and extrusion plastics: GB/T 1040.2—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [25] 中国国家标准化管理委员会. 塑料悬臂梁冲击强度的测定: GB/T 1843—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Plastics—Determination of izod impact strength: GB/T 1843—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [26] 班大明, 刘吉平. 聚苯基磷酸间苯二酚酯的合成、表征及热性能[J]. 高等学校化学学报, 2013, 34(5):1284-1287. doi: 10.7503/cjcu20120993

    BAN Daming, LIU Jiping. Synthesis, characterization and thermal stability of poly (resorcine phenyl phosphate)[J]. Chemical Journal of Chinese Universities,2013,34(5):1284-1287(in Chinese). doi: 10.7503/cjcu20120993
    [27] JING J, ZHANG Y, TANG X L, et al. Layer by layer deposition of polyethylenimine and bio-based polyphosphate on ammonium polyphosphate: A novel hybrid for simultaneously improving the flame retardancy and toughness of polylactic acid[J]. Polymer,2017,108:361-371. doi: 10.1016/j.polymer.2016.12.008
    [28] HAN D Q, WANG H, LU T T, et al. Scalable manufacturing green core-shell structure flame retardant, with enhanced mechanical and flame-retardant performances of poly(lactic acid)[J]. Journal of Polymers and the Environment,2022,30:2516-2533. doi: 10.1007/s10924-021-02358-1
    [29] MINCHEVA R, GUEMIZA H, HIDAN C, et al. Development of inherently flame-retardant phosphorylated PLA by combination of ring-opening polymerization and reactive extrusion[J]. Materials (Basel),2020,13(1):13. doi: 10.3390/ma13010013
    [30] SAG J, KUKLA P, GOEDDERZ D, et al. Synthesis of novel polymeric acrylate-based flame retardants containing two phosphorus groups in different chemical environments and their influence on the flammability of poly(lactic acid)[J]. Polymers (Basel),2020,12(4):778. doi: 10.3390/polym12040778
    [31] 徐文静, 龙丽娟, 徐国敏, 等. DOPO衍生物/聚乳酸复合材料的热降解、阻燃及力学性能[J]. 复合材料学报, 2021, 38(9):2841-2854. doi: 10.13801/j.cnki.fhclxb.20201124.003

    XU Wenjing, LONG Lijuan, XU Guomin, et al. Thermal degradation, flame retardancy and mechanical properties of DOPO derivatives/poly(lactic acid) composites[J]. Acta Materiae Compositae Sinica,2021,38(9):2841-2854(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201124.003
    [32] MU X W, YUAN B H, HU W Z, et al. Flame retardant and anti-dripping properties of polylactic acid/poly (bis(phenoxy)phosphazene)/expandable graphite composite and its flame retardant mechanism[J]. RSC Advances,2015,5(93):76068-76078. doi: 10.1039/C5RA12701G
    [33] BATAKLIEV T, GEORGIEV V, KALUPGIAN C, et al. Physico-chemical characterization of PLA-based composites holding carbon nanofillers[J]. Applied Composite Materials,2021,28(4):1175-1192. doi: 10.1007/s10443-021-09911-0
    [34] XIONG Z Q, ZHANG Y, DU X Y, et al. Green and scalable fabrication of core-shell biobased flame retardants for reducing flammability of polylactic acid[J]. ACS Sustainable Chemistry & Engineering,2019,7(9):8954-8963.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  683
  • HTML全文浏览量:  327
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-03
  • 修回日期:  2022-09-07
  • 录用日期:  2022-09-10
  • 网络出版日期:  2022-09-19
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回