留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

展宽布/网胎针刺C/C复合材料制备及力学性能

陶洋 李存静 逄增媛 张典堂

陶洋, 李存静, 逄增媛, 等. 展宽布/网胎针刺C/C复合材料制备及力学性能[J]. 复合材料学报, 2024, 41(4): 1934-1944. doi: 10.13801/j.cnki.fhclxb.20230922.004
引用本文: 陶洋, 李存静, 逄增媛, 等. 展宽布/网胎针刺C/C复合材料制备及力学性能[J]. 复合材料学报, 2024, 41(4): 1934-1944. doi: 10.13801/j.cnki.fhclxb.20230922.004
TAO Yang, LI Cunjing, PANG Zengyuan, et al. Preparation and mechanical properties of spreading cloth/carbon fiber felt needledC/C composites[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1934-1944. doi: 10.13801/j.cnki.fhclxb.20230922.004
Citation: TAO Yang, LI Cunjing, PANG Zengyuan, et al. Preparation and mechanical properties of spreading cloth/carbon fiber felt needledC/C composites[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1934-1944. doi: 10.13801/j.cnki.fhclxb.20230922.004

展宽布/网胎针刺C/C复合材料制备及力学性能

doi: 10.13801/j.cnki.fhclxb.20230922.004
基金项目: 173重点项目(2022-JCJQ-ZD-067-11);国家自然科学基金(11702115;12072131);173领域基金(2021-JCJQ-JJ-0211)
详细信息
    通讯作者:

    张典堂,博士,研究员,博士生导师,研究方向为新型编材结构设计及力学性能评价 E-mail: zhangdiantang@jiangnan.edu.cn

  • 中图分类号: TB332

Preparation and mechanical properties of spreading cloth/carbon fiber felt needledC/C composites

Funds: National Defense Basic Scientific Research Program of China (2022-JCJQ-ZD-067-11); National Natural Science Foundation of China (11702115; 12072131); National Defense Domain Foundation of China (2021-JCJQ-JJ-0211)
  • 摘要: 为提高针刺碳/碳(C/C)复合材料致密化效率和承载性能,分别设计了16 mm展宽布与网胎交替叠层的针刺预制体(B-NPs)、8 mm展宽布与网胎交替叠层的针刺预制体(H-NPs)及外层采用B-NPs结构、内层采用H-NPs结构的针刺预制体(T-NPs),联合化学气相渗透和浸渍-碳化工艺制备了3种针刺C/C复合材料。采用阿基米德排水法和X射线计算机断层扫描(Micro-CT)技术对3种针刺C/C复合材料的致密化效率、孔隙率和孔隙分布进行了统计,并开展了常温下三点弯曲力学性能测试。结果表明:随着展宽纱线宽度的增加,针刺C/C复合材料致密化效率得到提高,内部孔隙率有所下降。在相同的致密化时间内,B-NPs增密效果最佳,密度达到1.42 g/cm3,孔隙率仅为10.67%。三点弯曲载荷下,3种材料均表现出脆性破坏,其中T-NPs的弯曲强度和弯曲模量分别为173.04 MPa和20.66 GPa,具有优异的抗弯性能。3种材料的初始破坏位置均发生在针刺纤维束附近,其中低孔隙率的B-NPs针刺纤维束和碳布层破坏以纤维断裂为主;高孔隙率的H-NPs纤维/基体界面结合能力差,碳布层的破坏以纤维/基体界面脱粘和纤维拔出为主导。

     

  • 图  1  针刺预制体铺层结构设计

    Figure  1.  Design of needle punched prefabricated layer structure

    B-NPs—16 mm spreading coth and felt lamination layers; H-NPs—8 mm spreading coth and felt lamination layers; T-NPs—Outer layer is made of 16 mm spreading cloth with mesh tire lamination, while the inner layer is made of 8 mm spreading cloth with felt lamination

    图  2  三点弯曲实验装置及加载方式

    Figure  2.  Three point bending experimental device and loading method

    图  3  化学气相渗透(CVI)工艺致密化密度变化

    Figure  3.  Density variation during chemical vapor infiltration (CVI) densification process

    图  4  T700-12K碳纤维纱线展宽微观结构

    Figure  4.  Microstructure of T700-12K carbon fiber yarn stretching

    图  5  3种预制体热解碳沉积简化模型

    Figure  5.  Simplified models for pyrolysis carbon deposition of three types of preforms

    图  6  LPI工艺致密化密度变化

    Figure  6.  Density change during LPI process densification

    图  7  3种预制体液相浸渍-碳化简化模型

    Figure  7.  Simplified models for impregnation-carbonization of three types of prefabricated bodies

    图  8  展宽布/网胎针刺C/C复合材料内部孔隙统计

    Figure  8.  Internal pore statistics of spreading cloth/felt needled C/C composites

    图  9  展宽布/网胎针刺C/C复合材料孔隙分布特征:(a) B-NPs;(b) H-NPs;(c) T-NPs

    Figure  9.  Pore distribution characteristics of spreading cloth/felt needle punched C/C composites: (a) B-NPs; (b) H-NPs; (c) T-NPs

    图  10  展宽布/网胎针刺C/C复合材料三点弯曲载荷-位移曲线

    Figure  10.  Three point bending load-displacement curves of spreading cloth/felt needle punched C/C composites

    图  11  展宽布/网胎针刺C/C复合材料弯曲强度和模量

    Figure  11.  Bending strength and modulus of spreading cloth/felt needle punched C/C composites

    图  12  弯曲载荷下针刺C/C复合材料宏观损伤形貌

    Figure  12.  Macroscopic damage morphologies of needle punched C/C composites under bending load

    图  13  针刺C/C复合材料损伤机制示意图:(a) B-NPs;(b) H-NPs;(c) T-NPs

    Figure  13.  Schematic diagram of damage mechanism of needle punched C/C composite material: (a) B-NPs; (b) H-NPs; (c) T-NPs

    图  14  X射线计算机断层扫描(Micro-CT)针刺预制体内部形貌:(a) B-NPs;(b) H-NPs;(c) T-NPs

    Figure  14.  Morphology of X-ray computed tomography (Micro-CT) needle preformed body: (a) B-NPs; (b) H-NPs; (c) T-NPs

    图  15  展宽布/网胎针刺C/C复合材料三点弯曲损伤SEM图像

    Figure  15.  SEM images of three-point bending damage of spreading cloth/felt needle punched C/C composite material

    表  1  针刺基布与网胎性能参数

    Table  1.   Performance parameters of needle punched substrate and carbon fiber felt

    Material Thickness/mm Surface density/(g·m−2) Yarn density/(yarn·10 cm−1) Size/mm2
    16 mm spreading carbon cloth 0.08 100 6.25 350×220
    8 mm spreading carbon cloth 0.16 200 12.50 350×220
    Short cut fiber felt 0.40 50 350×220
    下载: 导出CSV

    表  2  针刺预制体参数

    Table  2.   Parameters of needle punched preforms

    Preform Density/(g·cm−3) Number of layers Thickness/mm Volume fraction/vol%
    16 mm 8 mm Carbon fiber felt
    H-NPs 0.35 10 9 6.04 22.41
    B-NPs 0.29 10 9 5.79 18.73
    T-NPs 0.33 6 4 9 6.13 20.78
    下载: 导出CSV

    表  3  针刺C/C复合材料密度基孔隙率

    Table  3.   Density based porosity of needle punched C/C composite materials

    Composite CVI/(g·cm−3) LPI/(g·cm−3) Porosity/%
    B-NPs 0.78 1.42 10.67
    H-NPs 0.74 1.31 13.32
    T-NPs 0.76 1.37 11.80
    Note: LPI—Liquid-phase impregnation/carbonization.
    下载: 导出CSV
  • [1] ZHOU Q H, WU G Z, WANG Z X, et al. Analysis and prediction of the width of spreading carbon fiber tow based on gray system theory[J]. Journal of Applied Polymer Science, 2021, 138(12): 50069. doi: 10.1002/app.50069
    [2] 郭飞, 李彦斌, 张培伟, 等. C/C复合材料销钉准静态和动态剪切性能[J]. 复合材料学报, 2021, 38(5): 1604-1610.

    GUO Fei, LI Yanbin, ZHANG Peiwei, et al. Quasi-static and dynamic shear properties of C/C composite pins[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1604-1610(in Chinese).
    [3] 邵春艳, 殷小玮, 张立同, 等. 孔隙率对三维针刺C/C复合材料电磁屏蔽性能的影响[J]. 复合材料学报, 2012, 29(3): 59-64.

    SHAO Chunyan, YIN Xiaowei, ZHANG Litong, et al. Influence of porosity on the electromagnetic shielding properties of 3D C/C composites[J]. Acta Materiae Compositae Sinica, 2012, 29(3): 59-64(in Chinese).
    [4] 刘文台, 程坤, 周何乐子, 等. 针刺C/C复合材料面内拉伸强度预测[J]. 复合材料学报, 2023, 40(2): 1142-1153.

    LIU Wentai, CHENG Kun, ZHOU Helezi, et al. Prediction of in-plane tensile strength of needle punched C/C composites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1142-1153(in Chinese).
    [5] 翟兆阳, 曲雅静, 张延超, 等. 碳纤维增强碳基复合材料加工技术研究与探讨[J]. 复合材料学报, 2022, 39(5): 2014-2033.

    ZHAI Zhaoyang, QU Yajing, ZHANG Yanchao, et al. Research and discussion on processing technology of carbon fiber reinforced carbon matrix composites[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2014-2033(in Chinese).
    [6] 高军鹏, 白江波, 邓华, 等. 间隙率对平纹及三轴向织物复合材料弹性性能的影响[J]. 宇航材料工艺, 2014, 44(5): 20-24, 35.

    GAO Junpeng, BAI Jiangbo, DENG Hua, et al. Effect of gap ratio on elastic properties of plain weave fabric and laminate with triaxial weave fabric composites[J]. Aerospace Materials & Technology, 2014, 44(5): 20-24, 35(in Chinese).
    [7] DELHAÈS P, TRINQUECOSTE M, LINES J F, et al. Chemical vapor infiltration of C/C composites: Fast densification processes and matrix characterizations[J]. Carbon, 2005, 43(4): 681-691. doi: 10.1016/j.carbon.2004.10.030
    [8] 孙乐, 王成, 李晓飞, 等. C/C复合材料预制体的研究进展[J]. 航空材料学报, 2018, 38(2): 86-95.

    SUN Le, WANG Cheng, LI Xiaofei, et al. Research progress on prefabricated C/C composite materials[J]. Journal of Aeronautical Materials, 2018, 38(2): 86-95(in Chinese).
    [9] 缑建杰, 张程煜, 吴小军, 等. 整体毡碳/碳复合材料的高温剪切性能研究[J]. 材料导报, 2013, 27(14): 74-77.

    HOU Jianjie, ZHANG Chengyu, WU Xiaojun, et al. Shear properties of integral felt C/C composites at elevated temperatures[J]. Materials Reports, 2013, 27(14): 74-77(in Chinese).
    [10] ZHANG X, LI X K, YUAN G M, et al. Large diameter pitch-based graphite fiber reinforced unidirectional carbon/carbon composites with high thermal conductivity densified by chemical vapor infiltration[J]. Carbon, 2017, 114: 59-69. doi: 10.1016/j.carbon.2016.11.080
    [11] 王梦千, 贾林涛, 刘瑶瑶, 等. ICVI工艺参数对碳/碳复合材料快速均匀致密化的影响[J]. 材料科学与工艺, 2021, 29(4): 25-32.

    WANG Mengqian, JIA Lintao, LIU Yaoyao, et al. Effect of ICVI process parameters on the rapid and uniform densification of carbon/carbon composite[J]. Materials Science and Technology, 2021, 29(4): 25-32(in Chinese).
    [12] LI K Z, DENG H L, CUI H J, et al. Floating catalyst chemical vapor infiltration of nanofilamentous carbon reinforced carbon/carbon composites densification behavior and matrix microstructure[J]. Carbon, 2014, 75: 353-365. doi: 10.1016/j.carbon.2014.04.014
    [13] YU M M, LI H D, XUE K, et al. Effect of microstructure evaluation during the PIP process on macroscopic properties of C/C composites[J]. Composite Structures, 2023, 308: 116651. doi: 10.1016/j.compstruct.2022.116651
    [14] 李艳, 崔红, 王斌, 等. 致密化工艺对厚壁针刺C/C复合材料性能的影响[J]. 复合材料学报, 2017, 34(10): 2337-2343.

    LI Yan, CUI Hong, WANG Bin, et al. Effect of densify- cation methods on properties of thick-wall needled C/C composites[J]. Acta Materiae Compositae Sinica, 2017, 34(10): 2337-2343(in Chinese).
    [15] WANG T, LI H, SHEN Q, et al. Dependence of mechanical properties on microstructure of high-textured pyrocarbon prepared via isothermal and thermal gradient chemical vapor infiltration[J]. Composites Part B: Engineering, 2020, 192: 107982. doi: 10.1016/j.compositesb.2020.107982
    [16] LU X F, ZHANG J, QIAN K. Densification rate and mechanical properties of carbon/carbon composites with layer-designed preform[J]. Ceramics International, 2019, 45(4): 4167-4175. doi: 10.1016/j.ceramint.2018.11.085
    [17] 樊凯, 卢雪峰, 张典堂, 等. 针刺密度对三维碳毡增强树脂炭复合材料力学性能的影响[J]. 材料导报, 2019, 33(14): 2450-2455.

    FAN Kai, LU Xuefeng, ZHANG Diantang, et al. Effect of needle density on mechanical properties of three-dimensional carbon felt reinforced resin-based carbon composites[J]. Materials Reports, 2019, 33(14): 2450-2455(in Chinese).
    [18] 刘宇峰, 李同起, 冯志海, 等. 薄层化碳布缝合碳/碳复合材料制备与性能[J]. 复合材料学报, 2021, 38(4): 1210-1222.

    LIU Yufeng, LI Tongqi, FENG Zhihai, et al. Preparation and properties of spreading carbon cloth stitched C/C composite[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1210-1222(in Chinese).
    [19] 李世超. 超薄碳纤维复合材料的制备及屏蔽性研究[D]. 郑州: 河南工业大学, 2020.

    LI Shichao. Study on preparation and shielding of ultra-thin carbon fiber composite materials[D]. Zhengzhou: Henan University of Technology, 2020(in Chinese).
    [20] 杨素心. C/C复合材料在光伏行业的应用[J]. 中国有色金属, 2018(7): 62-63.

    YANG Suxin. The application of C/C composites in the photovoltaic industry[J]. China Nonferrous Metals, 2018(7): 62-63(in Chinese).
    [21] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 精细陶瓷弯曲强度试验方法: GB/T 6569—2006[S]. 北京: 中国标准出版社, 2006.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Test method for bending strength of fine ceramics: GB/T 6569—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [22] 余鹏, 崔振铎, 朱胜利, 等. 浸渍−碳化工艺对碳/碳复合材料力学性能的影响[J]. 材料热处理学报, 2011, 32(S1): 33-36.

    YU Peng, CUI Zhenduo, ZHU Shengli, et al. Effect of impregnation/carbonization on mechanical properties of C/C composites[J]. Transactions of Materials and Heat Treatment, 2011, 32(S1): 33-36(in Chinese).
    [23] XU H, LI L, LI G, et al. In situ characterization of the flexural behavior and failure mechanism of 2D needle-punched carbon/carbon composites by digital image correlation[J]. Journal of Materials Science, 2022, 57(24): 11077-11091. doi: 10.1007/s10853-022-07272-y
    [24] 黄鲛, 陈婧旖, 罗磊, 等. 基于数字图像技术的C/SiC复合材料拉伸行为与失效机制[J]. 复合材料学报, 2022, 39(5): 2387-2397.

    HUANG Jiao, CHEN Jingyi, LUO Lei, et al. Tensile behavior and failure mechanism of C/SiC compositebased on digital image technology[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2387-2397(in Chinese).
    [25] 卢雪峰, 张洁, 钱坤, 等. 密度梯度变化预制体对C/C复合材料结构和力学性能的影响[J]. 化工新型材料, 2015, 43(8): 160-162.

    LU Xuefeng, ZHANG Jie, QIAN Kun, et al. Effect of carbon fiber preform with variable density on the structure and mechanical property of C/C composites[J]. New Chemical Materials, 2015, 43(8): 160-162(in Chinese).
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  438
  • HTML全文浏览量:  404
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-30
  • 修回日期:  2023-09-03
  • 录用日期:  2023-09-17
  • 网络出版日期:  2023-09-26
  • 刊出日期:  2024-04-01

目录

    /

    返回文章
    返回