Preparation and mechanical properties of spreading cloth/carbon fiber felt needledC/C composites
-
摘要: 为提高针刺碳/碳(C/C)复合材料致密化效率和承载性能,分别设计了16 mm展宽布与网胎交替叠层的针刺预制体(B-NPs)、8 mm展宽布与网胎交替叠层的针刺预制体(H-NPs)及外层采用B-NPs结构、内层采用H-NPs结构的针刺预制体(T-NPs),联合化学气相渗透和浸渍-碳化工艺制备了3种针刺C/C复合材料。采用阿基米德排水法和X射线计算机断层扫描(Micro-CT)技术对3种针刺C/C复合材料的致密化效率、孔隙率和孔隙分布进行了统计,并开展了常温下三点弯曲力学性能测试。结果表明:随着展宽纱线宽度的增加,针刺C/C复合材料致密化效率得到提高,内部孔隙率有所下降。在相同的致密化时间内,B-NPs增密效果最佳,密度达到1.42 g/cm3,孔隙率仅为10.67%。三点弯曲载荷下,3种材料均表现出脆性破坏,其中T-NPs的弯曲强度和弯曲模量分别为173.04 MPa和20.66 GPa,具有优异的抗弯性能。3种材料的初始破坏位置均发生在针刺纤维束附近,其中低孔隙率的B-NPs针刺纤维束和碳布层破坏以纤维断裂为主;高孔隙率的H-NPs纤维/基体界面结合能力差,碳布层的破坏以纤维/基体界面脱粘和纤维拔出为主导。
-
关键词:
- 针刺C/C复合材料 /
- 展宽布 /
- X射线计算机断层扫描 /
- 力学性能 /
- 脆性破坏
Abstract: In order to improve the densification efficiency and load-bearing performance of needle punched carbon/carbon (C/C) composites, needle punched preforms B-NPs with 16 mm spreading coth and felt tire alternating layers, needle punched preforms H-NPs with 8 mm spreading coth and felt tire alternating layers, and needle punched preforms T-NPs with B-NPs structure on the outer layer and H-NPs structure on the inner layer were designed. Three types of needle punched C/C composites were prepared by combining chemical vapor infiltration and impregnation-carbonization processes. The densification efficiency, porosity and pore distribution of three kinds of needle punched C/C composites were statistically analyzed by Archimedes drainage method and X-ray computed tomography (Micro-CT) technology, and three-point bending mechanical properties were tested at room temperature. The results indicate that as the width of the widened yarn increases, the densification efficiency of the needle punched C/C composite material is improved, and the internal porosity decreases. Within the same densification time, B-NPs have the best densification effect, with a density of 1.42g/cm3 and a porosity of only 10.67%. Under three-point bending load, the three materials all show brittle failure. The bending strength and flexural modulus of T-NPs are 173.04 MPa and 25.03 GPa respectively, which have excellent bending resistance. The initial failure of the three materials all occurs near the needle punched fiber bundle, with fiber fracture being the main failure mode for the low porosity B-NPs needle punched fiber bundle and carbon cloth layer; High porosity H-NPs fiber/matrix interface has poor bonding ability, and the failure of carbon cloth layer is dominated by fiber/matrix debonding and fiber pullout. -
图 1 针刺预制体铺层结构设计
Figure 1. Design of needle punched prefabricated layer structure
B-NPs—16 mm spreading coth and felt lamination layers; H-NPs—8 mm spreading coth and felt lamination layers; T-NPs—Outer layer is made of 16 mm spreading cloth with mesh tire lamination, while the inner layer is made of 8 mm spreading cloth with felt lamination
表 1 针刺基布与网胎性能参数
Table 1. Performance parameters of needle punched substrate and carbon fiber felt
Material Thickness/mm Surface density/(g·m−2) Yarn density/(yarn·10 cm−1) Size/mm2 16 mm spreading carbon cloth 0.08 100 6.25 350×220 8 mm spreading carbon cloth 0.16 200 12.50 350×220 Short cut fiber felt 0.40 50 — 350×220 表 2 针刺预制体参数
Table 2. Parameters of needle punched preforms
Preform Density/(g·cm−3) Number of layers Thickness/mm Volume fraction/vol% 16 mm 8 mm Carbon fiber felt H-NPs 0.35 — 10 9 6.04 22.41 B-NPs 0.29 10 — 9 5.79 18.73 T-NPs 0.33 6 4 9 6.13 20.78 表 3 针刺C/C复合材料密度基孔隙率
Table 3. Density based porosity of needle punched C/C composite materials
Composite CVI/(g·cm−3) LPI/(g·cm−3) Porosity/% B-NPs 0.78 1.42 10.67 H-NPs 0.74 1.31 13.32 T-NPs 0.76 1.37 11.80 Note: LPI—Liquid-phase impregnation/carbonization. -
[1] ZHOU Q H, WU G Z, WANG Z X, et al. Analysis and prediction of the width of spreading carbon fiber tow based on gray system theory[J]. Journal of Applied Polymer Science, 2021, 138(12): 50069. doi: 10.1002/app.50069 [2] 郭飞, 李彦斌, 张培伟, 等. C/C复合材料销钉准静态和动态剪切性能[J]. 复合材料学报, 2021, 38(5): 1604-1610.GUO Fei, LI Yanbin, ZHANG Peiwei, et al. Quasi-static and dynamic shear properties of C/C composite pins[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1604-1610(in Chinese). [3] 邵春艳, 殷小玮, 张立同, 等. 孔隙率对三维针刺C/C复合材料电磁屏蔽性能的影响[J]. 复合材料学报, 2012, 29(3): 59-64.SHAO Chunyan, YIN Xiaowei, ZHANG Litong, et al. Influence of porosity on the electromagnetic shielding properties of 3D C/C composites[J]. Acta Materiae Compositae Sinica, 2012, 29(3): 59-64(in Chinese). [4] 刘文台, 程坤, 周何乐子, 等. 针刺C/C复合材料面内拉伸强度预测[J]. 复合材料学报, 2023, 40(2): 1142-1153.LIU Wentai, CHENG Kun, ZHOU Helezi, et al. Prediction of in-plane tensile strength of needle punched C/C composites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1142-1153(in Chinese). [5] 翟兆阳, 曲雅静, 张延超, 等. 碳纤维增强碳基复合材料加工技术研究与探讨[J]. 复合材料学报, 2022, 39(5): 2014-2033.ZHAI Zhaoyang, QU Yajing, ZHANG Yanchao, et al. Research and discussion on processing technology of carbon fiber reinforced carbon matrix composites[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2014-2033(in Chinese). [6] 高军鹏, 白江波, 邓华, 等. 间隙率对平纹及三轴向织物复合材料弹性性能的影响[J]. 宇航材料工艺, 2014, 44(5): 20-24, 35.GAO Junpeng, BAI Jiangbo, DENG Hua, et al. Effect of gap ratio on elastic properties of plain weave fabric and laminate with triaxial weave fabric composites[J]. Aerospace Materials & Technology, 2014, 44(5): 20-24, 35(in Chinese). [7] DELHAÈS P, TRINQUECOSTE M, LINES J F, et al. Chemical vapor infiltration of C/C composites: Fast densification processes and matrix characterizations[J]. Carbon, 2005, 43(4): 681-691. doi: 10.1016/j.carbon.2004.10.030 [8] 孙乐, 王成, 李晓飞, 等. C/C复合材料预制体的研究进展[J]. 航空材料学报, 2018, 38(2): 86-95.SUN Le, WANG Cheng, LI Xiaofei, et al. Research progress on prefabricated C/C composite materials[J]. Journal of Aeronautical Materials, 2018, 38(2): 86-95(in Chinese). [9] 缑建杰, 张程煜, 吴小军, 等. 整体毡碳/碳复合材料的高温剪切性能研究[J]. 材料导报, 2013, 27(14): 74-77.HOU Jianjie, ZHANG Chengyu, WU Xiaojun, et al. Shear properties of integral felt C/C composites at elevated temperatures[J]. Materials Reports, 2013, 27(14): 74-77(in Chinese). [10] ZHANG X, LI X K, YUAN G M, et al. Large diameter pitch-based graphite fiber reinforced unidirectional carbon/carbon composites with high thermal conductivity densified by chemical vapor infiltration[J]. Carbon, 2017, 114: 59-69. doi: 10.1016/j.carbon.2016.11.080 [11] 王梦千, 贾林涛, 刘瑶瑶, 等. ICVI工艺参数对碳/碳复合材料快速均匀致密化的影响[J]. 材料科学与工艺, 2021, 29(4): 25-32.WANG Mengqian, JIA Lintao, LIU Yaoyao, et al. Effect of ICVI process parameters on the rapid and uniform densification of carbon/carbon composite[J]. Materials Science and Technology, 2021, 29(4): 25-32(in Chinese). [12] LI K Z, DENG H L, CUI H J, et al. Floating catalyst chemical vapor infiltration of nanofilamentous carbon reinforced carbon/carbon composites densification behavior and matrix microstructure[J]. Carbon, 2014, 75: 353-365. doi: 10.1016/j.carbon.2014.04.014 [13] YU M M, LI H D, XUE K, et al. Effect of microstructure evaluation during the PIP process on macroscopic properties of C/C composites[J]. Composite Structures, 2023, 308: 116651. doi: 10.1016/j.compstruct.2022.116651 [14] 李艳, 崔红, 王斌, 等. 致密化工艺对厚壁针刺C/C复合材料性能的影响[J]. 复合材料学报, 2017, 34(10): 2337-2343.LI Yan, CUI Hong, WANG Bin, et al. Effect of densify- cation methods on properties of thick-wall needled C/C composites[J]. Acta Materiae Compositae Sinica, 2017, 34(10): 2337-2343(in Chinese). [15] WANG T, LI H, SHEN Q, et al. Dependence of mechanical properties on microstructure of high-textured pyrocarbon prepared via isothermal and thermal gradient chemical vapor infiltration[J]. Composites Part B: Engineering, 2020, 192: 107982. doi: 10.1016/j.compositesb.2020.107982 [16] LU X F, ZHANG J, QIAN K. Densification rate and mechanical properties of carbon/carbon composites with layer-designed preform[J]. Ceramics International, 2019, 45(4): 4167-4175. doi: 10.1016/j.ceramint.2018.11.085 [17] 樊凯, 卢雪峰, 张典堂, 等. 针刺密度对三维碳毡增强树脂炭复合材料力学性能的影响[J]. 材料导报, 2019, 33(14): 2450-2455.FAN Kai, LU Xuefeng, ZHANG Diantang, et al. Effect of needle density on mechanical properties of three-dimensional carbon felt reinforced resin-based carbon composites[J]. Materials Reports, 2019, 33(14): 2450-2455(in Chinese). [18] 刘宇峰, 李同起, 冯志海, 等. 薄层化碳布缝合碳/碳复合材料制备与性能[J]. 复合材料学报, 2021, 38(4): 1210-1222.LIU Yufeng, LI Tongqi, FENG Zhihai, et al. Preparation and properties of spreading carbon cloth stitched C/C composite[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1210-1222(in Chinese). [19] 李世超. 超薄碳纤维复合材料的制备及屏蔽性研究[D]. 郑州: 河南工业大学, 2020.LI Shichao. Study on preparation and shielding of ultra-thin carbon fiber composite materials[D]. Zhengzhou: Henan University of Technology, 2020(in Chinese). [20] 杨素心. C/C复合材料在光伏行业的应用[J]. 中国有色金属, 2018(7): 62-63.YANG Suxin. The application of C/C composites in the photovoltaic industry[J]. China Nonferrous Metals, 2018(7): 62-63(in Chinese). [21] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 精细陶瓷弯曲强度试验方法: GB/T 6569—2006[S]. 北京: 中国标准出版社, 2006.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Test method for bending strength of fine ceramics: GB/T 6569—2006[S]. Beijing: China Standards Press, 2006(in Chinese). [22] 余鹏, 崔振铎, 朱胜利, 等. 浸渍−碳化工艺对碳/碳复合材料力学性能的影响[J]. 材料热处理学报, 2011, 32(S1): 33-36.YU Peng, CUI Zhenduo, ZHU Shengli, et al. Effect of impregnation/carbonization on mechanical properties of C/C composites[J]. Transactions of Materials and Heat Treatment, 2011, 32(S1): 33-36(in Chinese). [23] XU H, LI L, LI G, et al. In situ characterization of the flexural behavior and failure mechanism of 2D needle-punched carbon/carbon composites by digital image correlation[J]. Journal of Materials Science, 2022, 57(24): 11077-11091. doi: 10.1007/s10853-022-07272-y [24] 黄鲛, 陈婧旖, 罗磊, 等. 基于数字图像技术的C/SiC复合材料拉伸行为与失效机制[J]. 复合材料学报, 2022, 39(5): 2387-2397.HUANG Jiao, CHEN Jingyi, LUO Lei, et al. Tensile behavior and failure mechanism of C/SiC compositebased on digital image technology[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2387-2397(in Chinese). [25] 卢雪峰, 张洁, 钱坤, 等. 密度梯度变化预制体对C/C复合材料结构和力学性能的影响[J]. 化工新型材料, 2015, 43(8): 160-162.LU Xuefeng, ZHANG Jie, QIAN Kun, et al. Effect of carbon fiber preform with variable density on the structure and mechanical property of C/C composites[J]. New Chemical Materials, 2015, 43(8): 160-162(in Chinese).