Synthesis of a self-crosslinking flame retardant and its performance on solid epoxy resin
-
摘要: 环氧树脂(EP)凭借其良好的化学稳定性、电气性能、粘接性能及机械强度,广泛地应用于国民生产和生活的各个领域。但其易燃的特性给人们的生命和财产安全带来了威胁,因此,对环氧树脂进行阻燃改性一直是人们的研究热点。以3-氨基酚、4-硝基邻苯二甲腈、4-甲酰苯硼酸及9, 10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)为原料,分别通过取代、缩合和加成等反应合成了一种具有自交联能力的阻燃剂(DBPN),并将其用于固态环氧树脂的阻燃,系统研究了环氧树脂复合材料的热稳定性、阻燃性能及阻燃机制。结果表明:添加6.4wt%的DBPN,环氧树脂的初始热分解温度由纯EP的372.6℃提前至351.5℃,这有利于在燃烧过程中提前形成阻隔性炭层,隔绝传质传热过程;其UL-94垂直燃烧测试由N.R提升至V-2级,热释放速率峰值(PHRR)、总热释放量(THR)、烟生成速率峰值(PSPR)和总烟释放量(TSP)则较纯EP分别下降了34.2%、29.5%、20.8%和17.8%;通过对残炭的分析,提出了环氧树脂复合材料的阻燃机制。该工作为新型无卤阻燃剂的制备提供了创新思路。Abstract: Epoxy resin (EP) is widely used in various fields of national production and life due to its excellent chemical stability, electrical properties, adhesive properties, and mechanical strength. But its flammable properties pose a threat to people's lives and property safety, thus, the flame retardancy modification of epoxy resin has always been a research hotspot. Using 3-aminophenol, 4-nitrophthalonitrile, 4-formylphenylboronic acid, and 9, 10-dihydro-9-oxa-10-phosphazephenanthroline-10 oxide (DOPO) as raw materials, a self-crosslinking flame retardant (DBPN) was synthesized through substitution, condensation, including addition reactions, and was used for flame retardancy of solid epoxy resin. The thermal stability, flame retardancy, and flame retardancy mechanism of epoxy resin composites were systematically studied. The results show that adding 6.4wt%DBPN advance the initial thermal decomposition temperature of epoxy resin composite from 372.6℃ of neat epoxy resin (EP) to 351.5℃, which is conducive to the formation of a carbon layer barrier during the combustion process, isolating the mass and heat transfer processes. Its UL-94 vertical combustion test increased from N.R to V-2 level, with peak heat release rate (PHRR), total heat release (THR), peak smoke production rate (PSPR), and total smoke production (TSP) decreased by 34.2%, 29.5%, 20.8%, and 17.8%, respectively, compared to neat EP. The flame retardancy mechanism of epoxy resin composites was proposed through the analysis of residual carbon. This work provides innovative ideas for the preparation of new halogen-free flame retardants.
-
Key words:
- flame retardancy /
- synthesis /
- self-crosslinking /
- epoxy resin /
- mechanism
-
图 1 3-氨基苯氧基邻苯二甲腈(3-APN)及阻燃剂 (4-(((3-(3, 4-二氰基苯氧基) 苯基) 氨基)(6-氧化二苯并 [c, e][1-2] 氧膦-6-基) 甲基) 苯基) 硼酸 (DBPN)的合成路线
DMSO—Dimethyl sulfoxide
Figure 1. Synthesis route of 3-aminophenoxyphthalonitrile (3-APN) and (4-(((3-(3, 4-2-cyano phenoxy) phenyl) amino) (6-diphenyl oxide and [c, e] [1-2] oxygen phosphine-6-) methyl) phenyl) boric acid (DBPN)
图 10 纯EP及其复合材料的热释放速率 (HRR) (a)、总热释放 (THR) (b)、烟释放速率 (SPR) (c)、总烟释放 (TSP) (d)、CO释放速率 (COP) (e) 及CO2释放速率 (CO2P) 曲线 (f)
Figure 10. Heat release rate (HRR) (a), total heat release (THR) (b), smoke production rate (SPR) (c), toal smoke production (TSP) (d), CO production (COP) (e) and CO2 production (CO2P) curves (f) vs time for the neat EP and EP composites
图 11 纯EP ((a), (a1))、EP/6.4wt%3-APN ((b), (b1))、EP/6.4wt%DBPN ((c), (c1)) 锥形量热测试后的残炭数码照片及对应的SEM图像;(d) EP/6.4wt%DBPN残炭的元素Mapping
Figure 11. Digital photos and corresponding SEM images for residual char of neat EP ((a), (a1)), EP/6.4wt%3-APN ((b), (b1)), EP/6.4wt%DBPN ((c), (c1)); (d) EDS mapping for EP/6.4wt%DBPN
表 1 不同环氧树脂(EP)体系的配比
Table 1. Epoxy resin (EP) systems with different proportioning
Sample E12/g 3-APN/g DBPN/g DCD/g 2-MI/g Neat EP 100 0 0 2.5 0.5 EP/6.4wt%3-APN 100 7 0 2.5 0.5 EP/6.4wt%DBPN 100 0 7 2.5 0.5 Notes: E12—Epoxy resin with an epoxy value of 0.12; DCD—Dicyanodiamide; 2-MI—2-Methylimidazole. 表 2 EP复合材料在N2氛围下的TGA数据
Table 2. TGA data of EP composites under N2 atmosphere
Sample T5%/℃ Tmax/℃ *Yc/wt% Neat EP 372.6 433.5 11.0 EP/6.4wt%3-APN 365.8 428.0 13.4 EP/6.4wt%DBPN 351.5 435.0 12.4 Notes: T5%—Onset degradation temperature; Tmax—Maximum decompsoition temperature; Yc—Char yield at 800℃. 表 3 纯EP及其复合材料的锥形量热数据
Table 3. Cone calorimeter data of neat EP and EP composites
Sample TPHRR/s PHRR/
(kW·m−2)THR/
(MJ·m−2)PSPR/
(m2·s−1)TSP/m2 PCOP/
(g·s−1)PCO2P/
(g·s−1)FIGRA/
(kW·m−2·s−1)Neat EP 139±4 1095±29 117.6±2.2 0.24±0.013 23.1±2.1 0.0326±0.0006 0.695±0.010 7.9 EP/6.4wt%3-APN 131±5 936±21 112.4±1.9 0.16±0.011 20.0±1.9 0.0282±0.0005 0.542±0.009 7.4 EP/6.4wt%DBPN 104±3 729±19 82.9±1.6 0.19±0.012 19.0±1.4 0.0301±0.0005 0.374±0.007 7.0 Notes: TPHRR—The time to PHRR; PHRR—Peak heat release rate; THR—Total heat rate; PSPR—Peak smoke production rate; TSP—Total smoke production; PCOP—Peak CO production; PCO2P—Peak CO2 production; FIGRA—Fire growth rate. -
[1] XU J, YANG J Y, LIU X H, et al. Preparation and characterization of fast-curing powder epoxy adhesive at middle temperature[J]. Royal Society Open Science,2018,5(8):180566. doi: 10.1098/rsos.180566 [2] LOU G B, LI Q, JIN Q, et al. Preparation of environment-friendly solid epoxy resin with high-toughness via one-step banburying[J]. RSC Advances,2022,12(26):16615-16623. doi: 10.1039/D2RA01302A [3] 楼高波, 姚潇翎, 周亮, 等. 固态环氧树脂的一步密炼增韧[J]. 热固性树脂, 2023, 38(1):12-16. doi: 10.13650/j.cnki.rgxsz.2023.01.001LOU Gaobo, YAO Xiaoling, ZHOU Liang, et al. One step banburying mixing toughening of solid epoxy resin[J]. Thermosets,2023,38(1):12-16(in Chinese). doi: 10.13650/j.cnki.rgxsz.2023.01.001 [4] BAO Q R, HE R, LIU Y, et al. Functionalized halloysite nanotubes endowing epoxy resin with simultaneously enhanced flame retardancy and mechanical properties[J]. European Polymer Journal,2023,184:111797. doi: 10.1016/j.eurpolymj.2022.111797 [5] LI B L, LI L W, MAO Y W, et al. P/N flame retardant based on a pyrimidine ring for improving the flame retardancy, mechanical properties, and smoke suppression of epoxy resin[J]. ACS Applied Polymer Materials,2023,5(3):1756-1764. doi: 10.1021/acsapm.2c01869 [6] LIU Q Y, WANG D H, LI Z K, et al. Recent developments in the flame-retardant system of epoxy resin[J]. Materials,2020,13(9):2145. doi: 10.3390/ma13092145 [7] WANG P, CHEN L, XIAO H, et al. Nitrogen/sulfur-containing DOPO based oligomer for highly efficient flame-retardant epoxy resin[J]. Polymer Degradation & Stability,2020,171:109023. [8] HE W T, SONG P A, YU B, et al. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants[J]. Progress in Materials Science,2020,114:100687. doi: 10.1016/j.pmatsci.2020.100687 [9] HUO S Q, SONG P A, YU B, et al. Phosphorus-containing flame retardant epoxy thermosets: Recent advances and future perspectives[J]. Progress in Polymer Science,2021,114:101366. doi: 10.1016/j.progpolymsci.2021.101366 [10] LIU B W, ZHAO H B, CHEN L, et al. Eco-friendly synergistic cross-linking flame-retardant strategy with smoke and melt-dripping suppression for condensation polymers[J]. Composites Part B: Engineering,2021,211:108664. doi: 10.1016/j.compositesb.2021.108664 [11] ZHAO H B, WANG X L, GUAN Y, et al. Block self-cross-linkable poly(ethylene terephthalate) copolyester via solid-state polymerization: Crystallization, cross-linking, and flame retardance[J]. Polymer,2015,70:68-76. doi: 10.1016/j.polymer.2015.06.012 [12] MAO Z P, LI J W, PAN F, et al. High-temperature auto-cross-linking cyclotriphosphaznene: Synthesis and application in flame retardance and antidripping poly(ethylene terephthalate)[J]. Industrial & Engineering Chemistry Research,2015,54(15):3788-3799. [13] LIU B W, CHEN L, GUO D M, et al. Fire-safe polyesters enabled by end-group capturing chemistry[J]. Angewandte Chemie International Edition,2019,58(27):9188-9193. doi: 10.1002/anie.201900356 [14] GUO H, CHEN Z R, ZHANG J D, et al. Self-promoted curing phthalonitrile with high glass transition temperature for advanced composites[J]. Journal of Polymer Research,2012,19:1-8. doi: 10.1007/s10965-012-0001-8 [15] CHEN Z R, GUO H, YANG J, et al. Manufacturing and thermal and mechanical properties of advanced 3-aminophenoxyphthalonitrile/bisphthalonitrile composite laminates[J]. High Performance Polymers,2013,25(2):214-224. doi: 10.1177/0954008312460411 [16] GUO H, CHEN Z R, LIU X B. Effect of processing conditions on physical properties of 3-aminophenoxyphthalonitrile/epoxy laminates[J]. Journal of Applied Polymer Science,2014,131(1):39746. [17] XU M Z, YANG X L, ZHAO R, et al. Copolymerizing behavior and processability of benzoxazine/epoxy systems and their applications for glass fiber composite laminates[J]. Journal of Applied Polymer Science,2013,128(2):1176-1184. doi: 10.1002/app.38422 [18] American Society for Testing Material International. Standard test method for measuring the comparative burning characteristics of solid plastics in a vertical position: ASTM D3801[S]. West Conshohocken: ASTM, 2013. [19] International Organization for Standardization. Reactionto-fire tests-Heat release, smoke production and mass loss rate-Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement): ISO 5660-1: 2015[S]. Geneva: ISO, 2015. [20] YAN Y W, CHEN L, JIAN R K, et al. Intumescence: An effect way to flame retardance and smoke suppression for polystryene[J]. Polymer Degradation & Stability,2012,97(8):1423-1431. [21] LOU G B, RAO Q Q, LI Q, et al. Novel ionic complex with flame retardancy and ultrastrong toughening effect on epoxy resin[J]. Chemical Engineering Journal,2023,455:139334. doi: 10.1016/j.cej.2022.139334 [22] PENG X L, LI Z K, WANG D H, et al. A facile crosslinking strategy endows the traditional additive flame retardant with enormous flame retardancy improvement[J]. Chemical Engineering Journal,2021,424:130404. doi: 10.1016/j.cej.2021.130404 [23] LIU X F, XIAO Y F, LUO X, et al. Flame-retardant multifunctional epoxy resin with high performances[J]. Chemical Engineering Journal,2022,427:132031. doi: 10.1016/j.cej.2021.132031 [24] HUO S Q, ZHOU Z X, JIANG J W, et al. Flame-retardant, transparent, mechanically-strong and tough epoxy resin enabled by high-efficiency multifunctional boron-based polyphosphonamide[J]. Chemical Engineering Journal,2022,427:131578. doi: 10.1016/j.cej.2021.131578 [25] XUE X T, LU R, LIU M, et al. A facile and general approach for the preparation of boronic acid-functionalized magnetic nanoparticles for the selective enrichment of glycoproteins[J]. Analyst,2019,144(2):641-648. doi: 10.1039/C8AN01704B [26] LOU G B, MA Z W, DAI J F, et al. Fully biobased surface-functionalized microcrystalline cellulose via green self-assembly toward fire-retardant, strong, and tough epoxy biocomposites[J]. ACS Sustainable Chemistry & Engineering,2021,9(40):13595-13605. [27] ZHANG G, WU W H, YAO M, et al. Novel triazine-based metal-organic frameworks: Synthesis and mulifunctional application of flame retardant, smoke suppression and toxic attenuation on EP[J]. Materials & Design,2023,226:111664. [28] OU M Y, LIAN R C, CUI J H, et al. Co-curing preparation of flame retardant and smoke-suppressive epoxy resin with a novel phosphorus-containing ionic liquid[J]. Chemosphere,2023,311:137061. doi: 10.1016/j.chemosphere.2022.137061 [29] WANG P J, LIAO D J, HU X P, et al. Facile fabrication of biobased PNC-containing nano-layered hybrid: Preparation, growth mechanism and its efficient fire retardancy in epoxy[J]. Polymer Degradation & Stability,2019,159:153-162. [30] ZHU Z M, SHANG K, WANG L X, et al. Synthesis of an effective bio-based flame-retardant curing agent and its application in epoxy resin: Curing behavior, thermal stability and flame retardancy[J]. Polymer Degradation & Stability,2019,167:179-188.