留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效率双结钙钛矿叠层太阳能电池研究进展

张美荣 祝曾伟 郁骁琦 于同旭 卢荻 李顺峰 周大勇 杨辉

张美荣, 祝曾伟, 郁骁琦, 等. 高效率双结钙钛矿叠层太阳能电池研究进展[J]. 复合材料学报, 2023, 40(2): 726-740. doi: 10.13801/j.cnki.fhclxb.20220923.002
引用本文: 张美荣, 祝曾伟, 郁骁琦, 等. 高效率双结钙钛矿叠层太阳能电池研究进展[J]. 复合材料学报, 2023, 40(2): 726-740. doi: 10.13801/j.cnki.fhclxb.20220923.002
ZHANG Meirong, ZHU Zengwei, YU Xiaoqi, et al. Research progress of high-efficiency double-junction perovskite tandem solar cells[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 726-740. doi: 10.13801/j.cnki.fhclxb.20220923.002
Citation: ZHANG Meirong, ZHU Zengwei, YU Xiaoqi, et al. Research progress of high-efficiency double-junction perovskite tandem solar cells[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 726-740. doi: 10.13801/j.cnki.fhclxb.20220923.002

高效率双结钙钛矿叠层太阳能电池研究进展

doi: 10.13801/j.cnki.fhclxb.20220923.002
基金项目: 江苏省碳达峰碳中和科技创新专项(产业前瞻与关键核心技术攻关项目)(BE2022021);苏州市碳达峰碳中和科技支撑项目(ST202219)
详细信息
    通讯作者:

    周大勇,博士,研究员,研究方向为半导体低维光电器件和新型叠层太阳能电池 E-mail: zhoudayong2021@gusulab.ac.cn

  • 中图分类号: TM914.4

Research progress of high-efficiency double-junction perovskite tandem solar cells

Funds: Special Fund for the “Dual Carbon” Science and Technology Innovation of Jiangsu Province (Industrial Prospect and Key Technology Research Program) ( BE2022021); “Dual Carbon” Science and Technology Innovation of Suzhou (ST202219)
  • 摘要: 以钙钛矿电池为顶电池的叠层太阳电池发展迅速,成为太阳能光伏领域的研究热点之一。随着电池结构和制备工艺的优化,叠层电池的光电转换效率快速提升,单片钙钛矿/晶硅叠层电池的效率已达到31.3%。本综述对近年来以宽带隙钙钛矿电池作为顶子电池、晶体硅电池及其他新型中窄带隙电池(钙钛矿电池、有机电池、铜铟镓硒(CIGS)电池)作为底子电池的叠层电池的研究进展进行了系统梳理,总结了叠层电池的顶电池、中间互联层和底电池的材料、结构及光电性能等方面的关键技术及难点,希望能够为进一步提升叠层电池效率提供一些思路。并对未来低成本高效叠层太阳能电池的光学和电学优化需求做出了分析与展望。

     

  • 图  1  双结叠层电池分波段利用太阳光谱示意图[4]

    Figure  1.  Schematic diagram of segmented utilization of solar spectrum for 2-junction tandem cells[4]

    图  2  有效面积为1 cm2的钙钛矿/晶硅叠层电池:(a) 结构示意图;(b) 横截面SEM图像;(c) 最优电池的光照和暗态电流密度-光电压(J-V)曲线和最大功率点(MPP)追踪(插图);(d) 最优电池的外量子效率(EQE)曲线[13]

    PDMS—Polydimethylsiloxane; PFN-Br—Poly(9, 9-bis(3′-(N, N-dimethyl)-N-ethylammonium-propyl-2, 7-fluorene)-alt-2, 7-(9, 9-dioctylfluorene)) dibromide

    Figure  2.  Schematic stack of 1 cm2 two-terminal perovskite/Si tandems: (a) Schematic of the two-terminal monolithic tandem structure; (b) Cross-sectional SEM image; (c) Light and dark current density-optical voltage (J-V) curves and Maximum power point (MPP) tracking (inset) of the champion tandem; (d) External quantum efficiency (EQE) spectra of the champion tandem[13]

    图  3  钙钛矿电池各组分能级排列 (a) 和含有不同HTL的钙钛矿电池的J-V曲线 (b)[14];(c) 叠层电池结构示意图;钙钛矿膜层沉积在不同衬底上时的准费米能级裂分值 (d) 和认证的J-V曲线(包括MPP效率和电性能参数) (e)[8]

    GO—Graphene oxide; AZO—Aluminium-doped zinc oxide; IZO—Indium zinc oxide; Me-2PACz—[2-(3, 6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid; PEDOT : PSS—Poly(3, 4-vinyl dioxyethiophene) : Polystyrene sulfonic acid; ISE—Institute of solar energy

    Figure  3.  Relative energy levels (a) and J-V curves of the various device components (b) in the perovskite solar cells [14]; (c) Schematic stack of the monolithic perovskite/silicon tandem solar cell; Quasi–Fermi level splitting values of perovskite films on different substrates (d) and certified J-V curve (Including the MPP value and the device parameters) (e)[8]

    图  4  (a) 仿真的钙钛矿/HJT叠层电池结构示意图;(b) 电池材料折射率对比图;(c) 1.1 cm2最优电池的电流-电压(I-V)曲线[16]

    ARC—Anti-reflective coating; HTL—Hole transport layer; ETL—Electron transport layer; n@800nm—Refractive index of 800 nm wavelength; ${n_{{\rm{Si}}{{\rm{O}}_x}}} $—Refractive index of SiOx; nPerovskite—Refractive index of perovskite; ${t_{{\rm{Si}}{{\rm{O}}_x}}} $—Thickness of SiOx; λB/C—Wavelength range; nSi—Refractive index of Si; η—Photoelectric conversion efficiency

    Figure  4.  (a) Schematic structure of the simulated monolithic perovskite/heterojunction tandem cell; (b) Comparison of refractive index of cell stack; (c) Current-voltage (I-V) curve (1.1 cm2)[16]

    图  5  钙钛矿/异质结叠层太阳能电池:(a)结构示意图;(b)二次电子SEM图像;(c) J-V曲线(插图为器件照片)[17];(d)正弦纳米结构互联面的SEM图像[21]

    Figure  5.  Perovskite/heterojunction tandem solar cell: (a) Schematic view; (b) Secondary electron SEM images; (c) J-V data ( Inset is photo of the device)[17]; (d) SEM images of sinusoidally nanostructured interconnection layer[21]

    图  6  全钙钛矿叠层电池结构示意图 (a) 和截面SEM图像 (b)[27]

    Eg—Energy gap

    Figure  6.  Schematic structure (a) and SEM image of a cross section (b) of the all perovskite tandem solar cell[27]

    图  7  (a) 全钙钛矿叠层电池的结构示意图;(b) AM1.5 G光照1000 h时MPP追踪[29]

    NBG—Narrow band gap; WBG—Wide band gap; ICLs—Interface connection layers

    Figure  7.  (a) Schematic structure of all perovskite tandem solar cell; (b) MPP tracking after 1000 h illumination under AM1.5 G[29]

    图  8  (a) 全钙钛矿叠层电池结构示意图;(b) J-V曲线[31];(c)时间稳定性曲线[32]

    ALD—Atomic layer deposition; T90—Duration during which the PCE will reach 90% of the initial value

    Figure  8.  (a) Schematic structure of all perovskite tandem solar cell structure; (b) J-V curves[31]; (c) Time stability curve[32]

    图  9  钙钛矿/有机叠层电池的结构示意图 (a) 和J-V曲线 (b)[42]

    Figure  9.  Schematic structure (a) and J-V curves (b) of the tandem solar cell[42]

    图  10  (a) 钙钛矿/有机叠层电池结构示意图;(b) BPA钝化NiOx/钙钛矿界面缺陷示意图;最优叠层电池的J-V曲线 (c) 和EQE曲线及吸收光谱 (d)[37]

    Figure  10.  (a) Schematic structure of the tandem solar cell; (b) Schematic diagrams show the BPA passivation of NiOx HTLs; J-V curves (c) and EQE and the total absorbance for the champion tandem solar cell (d)[37]

    图  11  钙钛矿电池结构示意图和放大显示ITO/SAM分子/钙钛矿附着示意图[34]

    Figure  11.  Schematic of the perovskite solar cell structure and the zoom-in visualizes of attaching between ITO/SAM molecules/perovskite[34]

    图  12  (a) 钙钛矿/CIGS 叠层电池示意图和截面SEM图像;(b) 认证的J-V曲线和MPP处的效率(插图);(c)子电池的EQE曲线[35]

    PVSK—Perovskite; NPs—Nano particles

    Figure  12.  (a) Schematic and cross-sectional SEM image of perovskite/CIGS tandem solar cell; (b) Certified J-V curve and efficiency at the MPP (inset); (c) EQE spectra of the subcells[35]

    表  1  高效率钙钛矿/晶硅叠层电池性能

    Table  1.   Performance of high efficiency perovskite/c-Si solar cells

    Research instituteStructurePSCsICLsc-Si cellArea
    /cm2
    PCE
    /%
    Jsc
    /(mA·cm−2)
    Voc
    /V
    FF
    /%
    Ref.
    ANUn-i-pTiO2/Cs0.07Rb0.03FA0.765MA0.135Pb-(I0.85Br0.15)3(1.62 eV)/Spiro-OMeTADITOn-PERC1.00022.5017.601.75073.80[15]
    EPFLp-i-nSpiro-TTB/CsxFA1-xPb(I, Br)3/C60/SnO2n+/p+nc-
    Si:H
    HJT25.2419.501.78669.10[17]
    EPFLn-i-pC60/Cs0.19FA0.81Pb-(I0.78Br0.22)3/
    Spiro-OMeTAD
    n+/p+nc-
    Si:H
    n-
    HJT
    0.25022.0016.801.75177.10[22]
    UNLp-i-nPTAA/Cs0.15(FA0.83MA0.17)0.85Pb
    (I0.7Br0.3)3(1.64 eV)/C60/SnO2
    ITOn-
    HJT
    25.4017.801.80019.40[12]
    UNISTp-i-nPTAA/(FAMAPbI3)0.8(MAPbBr3)0.2/
    PCBM
    ITOp-Al BSF0.27021.0216.131.64579.23[14]
    HZB/
    Oxford
    p-i-nF4-TCNQ doped PolyTPD/NPD/Cs0.05(FA0.83MA0.17)0.95
    Pb(I1-xBrx)3(1.63 eV)/PC61BM
    ITOn-
    HJT
    1.08825.2019.021.79374.30[16]
    HZBp-i-nMe-4 PACz(SAM)/Cs0.05(FA0.77MA0.23)0.95
    Pb(I0.77Br0.23)3/(1.68 eV)/C60
    ITOHJT1.06429.1519.261.90079.52[8]
    UNCp-i-nPTAA/Cs0.1MA0.9Pb(I0.9Br0.1)3/C60/SnO2ITOn-
    HJT
    26.0019.201.82074.40[19]
    HZBp-i-nMePACz/Triple-cation
    perovskite/C60
    ITOHJT1.01629.801.88477.30[20]
    EPFL/
    CSEM
    1.16731.301.91379.80[9]
    Notes: ANU—Australian National University; EPFL—Ecole Polytechnique Fédérale de Lausanne; UNL—University of Nebraska-Lincoln; UNIST—Ulsan National Institute of Science and Technology; HZB—Helmholtz-Zentrum Berlin; Oxford—Oxford University; UNC—University of North Carolina; CSEM—Centre Suissed' Electronique et de Microtechnique; PSCs—Perovskite solar cells; ICLs—Interface connection layers; PCE—Power conversion efficiency; Jsc—Short circuit current density; Voc—Volts open circuit; FF—Fill factor; ITO—Indium tin oxide; spiro-OMeTAD—2, 2', 7, 7'-tetrakis[N, N-di(4-methoxyphenyl)amino]-9, 9'-spirobifluorene; Spiro-TTB—2, 2', 7, 7'-tetra(N, N-di-tolyl)amino-spiro-bifluor; FA—Formamidine; MA—Methylamine; PTAA—Poly[bis(4-phenyl)(2, 4, 6-trimethylphenyl)amine]; PCBM/PC61BM—[6, 6]-phenyl-C61-butyric acid methyl ester; HJT—Heterojunction; n-PERC—n-type passivated emitter and rear cell; P-Al BSF—p-type Al back surface field cell; F4-TCNQ—2, 3, 5, 6-tetrafluoro-7, 7, 8, 8-tetracyanoquinodimethane; PolyTPD—Doped poly(4-butyl-phenyl-diphenylamine; NPD—N, N′-di(1-naphthyl)-N, N′-diphenyl-(1, 1′-biphenyl)-4, 4′-diamine; Me-4PACz—[4-(3, 6-dimethyl-9H-carbazol-9-yl)butyl]phosphonicacid; SAM—Self assembled monolayer.
    下载: 导出CSV

    表  2  高效率钙钛矿/中窄带隙叠层电池性能

    Table  2.   Performance of high efficiency perovskite/medium-narrow band gap solar cells

    Bottom
    cell
    Research
    institute
    StructureDevice structureArea/
    cm2
    PCE/
    %
    Jsc/
    (mA·cm2)
    Voc/
    V
    FF/
    %
    Ref.
    PSCUVn-i-pITO/TiO2/Cs0.15FA0.85Pb(I0.3Br0.7)3/TaTm/TaTm:F6-/TCNNQ/C60:Phlm/C60/MAPbI3/TaTm/TaTm:F6-TCNNQ/Au14.80 9.602.13272.20[26]
    UTp-i-nITO/PTAA/FA0.8Cs0.2Pb(I0.7Br0.3)3(1.75 eV)/C60/BCP/
    Ag/MoOx/ITO/PEDOT:PSS/(FASnI3)0.6(MAPbI3)0.4:Cl
    (1.25 eV)/C60/BCP/Ag
    0.10521.0014.001.92278.10[27]
    UNCp-i-nITO/PTAA/Cs0.4FA0.6PbI1.95Br1.05(1.78 eV)/C60/
    SnO2-x/Cs0.05MA0.45FA0.5Pb0.5Sn0.5I3(1.21 eV)/C60/
    BCP/Ag
    5.90024.3015.202.03078.80[29]
    NUp-i-nGlass/ITO/VNPB/Cs0.2FA0.8Pb(I0.6Br0.4)3(1.77 eV)/C60/
    SnO2/Au/PEDOT:PSS/FA0.7MA0.3Pb0.5Sn0.5I3(1.22 eV)/
    C60/BCP/Ag
    0.04924.9015.602.00079.90[31]
    NUp-i-nITO/NiO/VNPB/FA0.8Cs0.2Pb(I0.62Br0.38)3/C60/SnO2/Au/
    PEDOT:PSS/FA0.7MA0.3Pb0.5Sn0.5I3/C60/BCP/Cu
    0.04926.7016.502.03079.90[30]
    NUp-i-nGlass/ITO/PTAA/Cs0.2FA0.8Pb(I0.6Br0.4)3(1.77 eV)/C60/
    SnO2/Au/PEDOT:PSS/FA0.7MA0.3Pb0.5Sn0.5I3(1.22 eV)/
    C60/BCP/Ag
    0.07324.5014.902.01381.60[32]
    OPVHKUp-i-nITO/NiOx/BPA/Cs0.25FA0.75Pb(I0.6Br0.4)3(1.79 eV)/C60/
    BCP/CRL/MoOx/OPV(1.36 eV)/PNDIT-F3N/Ag
    0.08023.6014.832.06077.20[37]
    SCUTp-i-nITO/Poly-TPD/MA1.06PbI2Br(SCN)0.12/PCMB/BCP/Au/MoO3/
    PM6:Y6/PFN-Br/Ag
    20.0313.131.94078.50[40]
    CityUn-i-pITO/SnO2/CsPbI2.1Br0.9(1.79 eV)/PBDBT/MoO3/Ag/ZnO/
    PM6:Y6/MoO3/Ag
    18.0612.771.89074.81[42]
    CIGSIBM T. J.p-i-nGlass/Si3N4/Mo/CIGS/CdS/ITO/PEDOT:PSS/Perovskite/
    PCBM/Al
    0.40010.9812.701.45056.60[43]
    HZBGlass/Mo/CIGS/CdS/ZnO/SAM/Cs0.05(MA0.23FA0.77)
    Pb1.1(I0.77Br0.23)3(1.68 eV)/C60/SnO2/IZO/LiF/Ag
    1.04024.2018.801.77071.20[11]
    UCLAGlass/Mo/CIGS/CdS/i-ZnO/BZO/ITO/PTAA/Cs0.09FA0.77MA0.14Pb(I0.86Br0.14)3/
    PCBM/ZnONPs/ITO/MgF
    22.4317.301.77473.10[35]
    HZBGlass/Mo/CIGS/CdS/ZnONiOX/PTAA/Cs0.05(MA0.17
    FA0.83)Pb1.1(I0.83Br0.17)/C60/SnO2/IZO/LiF
    0.77821.6018.001.59075.00[46]
    Notes: UV—Universidad de Valencia; UT—University of Toledo; NU—Nanjing University; HKU—University of Hong Kong; SCUT—South China University of Technology; City U—City University of Hong Kong; IBM—IBM T. J. Watson Research Center; UCLA—University of California–Los Angeles; PSC—Perovskite solar cell; OPV—Organic photovoltaic solar cell; CIGS—Copper indium gallium selenide cell; TaTm—N4, N4, N4″, N4″-tetra([1,1′-biphenyl]-4-yl)-[1,1′:4′,1″-terphenyl]-4,4″-diamine F6-TCNNQ—2,2′-(perfluoronaphthalene-2,6-diylidene) dimalononitrile; Phlm—N1,N4-bis(tri-p-tolylphosphoranylidene) benzene-1,4-diamine; BCP—Bathocuproine; VNPB—N4, N4 ′-di(naphthalen-1-yl)-N4,N4′-bis(4-vinylphenyl) biphenyl-4,4′-diamine; PNDIT-F3N—Poly[[2,7-bis(2-ethylhexyl)-1,2,3,6,7,8-hexahydro-1,3,6,8-tetraoxobenzo[lmn][3,8]phenanthroline-4,9-diyl]-2,5-thiophenediyl[9,9-bis[3-(dimethylamino)propyl]-9H-fluorene-2,7-diyl]-2,5-thiophenediyl]; PM6—Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiop′hene))-alt-(5,5-(1′,3′-di-2-thenyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2-c:4′,5′-c′dithiophene-4,5-dione]))]; Y6—2,2′-[[12,13-Bis(2-ethylhexyl)-o[2′,3′:4,5] pyrrolo[3,2-e:2′,3′-g][2,1,3]benzothiadiazole-2,10-diyl]bis[methylidyne(5,6-difluoro-3-oxo-1H-indene-2,1(3H)-diylidene)]]]bis[propanedinitrile]; BZO—Boron-doped ZnO.
    下载: 导出CSV
  • [1] 王青, 孙頔, 张海霞, 等. 中国光伏行业2021年回顾与2022年展望[J]. 电气时代, 2022(5):20-28.

    WANG Qing, SUN Di, ZHANG Haixia, et al. Review of China's PV industry in 2021 and outlook for 2022[J]. Electric Age,2022(5):20-28(in Chinese).
    [2] GU W B, MA T, LI M, et al. A coupled optical-electrical-thermal model of the bifacial photovoltaic module[J]. Applied Energy,2020,258:114075. doi: 10.1016/j.apenergy.2019.114075
    [3] MEIER J, FLÜCKIGER R, KEPPNER H, et al. Complete microcrystalline p-i-n solar cell-crystalline or amorphous cell behavior?[J]. Applied Physics Letters,1994,65(7):860-862. doi: 10.1063/1.112183
    [4] EPERON G E, HORANTNER M T, SNAITH H J. Metal halide perovskite tandem and multiple-junction photovoltaics[J]. Nature Reviews Chemistry, 2017, 1: 95.
    [5] GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (version 59)[J]. Progress in Photovoltaics: Research and Applications, 2022, 30(1): 3-12.
    [6] ANAYA M, LOZANO G, CALVO M E, et al. ABX3 perovskites for tandem solar cells[J]. Joule,2017,1(4):769-793. doi: 10.1016/j.joule.2017.09.017
    [7] LV S S, GAO W Y, LIU Y H, et al. Stability of Sn-Pb mixed organic-inorganic halide perovskite solar cells: Progress, challenges, and perspectives[J]. Journal of Energy Che-mistry,2022,65:371-404. doi: 10.1016/j.jechem.2021.06.011
    [8] AL-ASHOURI A, KÖHNEN E, LI B, et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction[J]. Science,2020,370(6522):1300-1309. doi: 10.1126/science.abd4016
    [9] NREL Transforming Energy. Best research-cell efficiency chart: Photovoltaic research[EB/OL]. https://www.nrel.gov/pv/cell-efficiency.html.
    [10] BRINKMANN K O, BECKER T, ZIMMERMANN F, et al. Perovskite-organic tandem solar cells with indium oxide interconnect[J]. Nature,2022,604(7905):280-286. doi: 10.1038/s41586-022-04455-0
    [11] JOŠT M, KÖHNEN E, AL-ASHOURI A, et al. Perovskite/CIGS tandem solar cells: From certified 24.2% toward 30% and beyond[J]. ACS Energy Letters,2022,7(4):1298-1307. doi: 10.1021/acsenergylett.2c00274
    [12] CHEN B, YU Z S, LIU K, et al. Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%[J]. Joule,2019,3(1):177-190. doi: 10.1016/j.joule.2018.10.003
    [13] XU J, BOYD C C, YU Z J, et al. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems[J]. Science,2020,367(6482):1097-1104. doi: 10.1126/science.aaz5074
    [14] KIM C U, YU J C, JUNG E D, et al. Optimization of device design for low cost and high efficiency planar monolithic perovskite/silicon tandem solar cells[J]. Nano Energy,2019,60:213-221. doi: 10.1016/j.nanoen.2019.03.056
    [15] WU Y L, YAN D, PENG J, et al. Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency[J]. Energy & Environmental Science,2017,10(11):2472-2479.
    [16] MAZZARELLA L, LIN Y H, KIRNER S, et al. Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%[J]. Advanced Energy Materials,2019,9(14):1803241. doi: 10.1002/aenm.201803241
    [17] SAHLI F, WERNER J, KAMINO B A, et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency[J]. Nature Materials,2018,17(9):820-826. doi: 10.1038/s41563-018-0115-4
    [18] LIU M, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature,2013,501(7467):395-398. doi: 10.1038/nature12509
    [19] CHEN B, YU Z S, MANZOOR S, et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells[J]. Joule,2020,4(4):850-864. doi: 10.1016/j.joule.2020.01.008
    [20] SUTTER J, EISENHAUER D, WAGNER P, et al. Tailored nanostructures for light management in silicon heterojunction solar cells[J]. Solar RRL, 2020, 4(12): 2000484-2000491.
    [21] SUTTER J, TOCKHORN P, WAGNER P, et al. Periodically nanostructured perovskite/silicon tandem solar cells with power conversion efficiency exceeding 26%[C]//2021 IEEE 48th Photovoltaic Specialists Conference (PVSC). IEEE, 2021: 1034-1036.
    [22] SAHLI F, KAMINO B A, WERNER J, et al. Improved optics in monolithic perovskite/silicon tandem solar cells with a nanocrystalline silicon recombination junction[J]. Advanced Energy Materials,2018,8(6):1701609. doi: 10.1002/aenm.201701609
    [23] CHEN C W, HSIAO S Y, CHEN C Y, et al. Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells[J]. Journal of Materials Chemistry A,2015,3(17):9152-9159. doi: 10.1039/C4TA05237D
    [24] HEO J H, IM S H. CH3NH3PbBr3-CH3NH3PbI3 perovskite-perovskite tandem solar cells with exceeding 2.2 V open circuit voltage[J]. Advanced Materials,2016,28(25):5121-5125. doi: 10.1002/adma.201501629
    [25] JIANG F Y, LIU T F, LUO B W, et al. A two-terminal perovskite/perovskite tandem solar cell[J]. Journal of Materials Chemistry A,2016,4(4):1208-1213. doi: 10.1039/C5TA08744A
    [26] FORGÁCS D, GIL-ESCRIG L, PÉREZ-DEL-REY D, et al. Efficient monolithic perovskite/perovskite tandem solar cells[J]. Advanced Energy Materials,2017,7(8):1602121. doi: 10.1002/aenm.201602121
    [27] ZHAO D W, CHEN C, WANG C L, et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers[J]. Nature Energy,2018,3(12):1093-1100. doi: 10.1038/s41560-018-0278-x
    [28] TONG J H, SONG Z N, KIM D H, et al. Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells[J]. Science,2019,364(6439):475-479. doi: 10.1126/science.aav7911
    [29] YU Z H, YANG Z B, NI Z Y, et al. Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells[J]. Nature Energy,2020,5(9):657-665. doi: 10.1038/s41560-020-0657-y
    [30] LIN R X, XU J, WEI M Y, et al. All-perovskite tandem solar cells with improved grain surface passivation[J]. Nature, 2022, 603: 73-78.
    [31] WANG Y R, GU S, LIU G L, et al. Cross-linked hole transport layers for high-efficiency perovskite tandem solar cells[J]. Science China Chemistry,2021,64(11):2025-2034. doi: 10.1007/s11426-021-1059-1
    [32] LIN R, XIAO K, QIN Z, et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink[J]. Nature Energy,2019,4(10):864-873. doi: 10.1038/s41560-019-0466-3
    [33] MENG L, ZHANG Y, WAN X, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency[J]. Science,2018,361(6407):1094-1098. doi: 10.1126/science.aat2612
    [34] AL-ASHOURI A, MAGOMEDOV A, ROSS M, et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells[J]. Energy & Environmental Science,2019,12(11):3356-3369.
    [35] HAN Q, HSIEH Y T, MENG L, et al. High-performance perovskite/Cu(In, Ga)Se2 monolithic tandem solar cells[J]. Science,2018,361(6405):904-908. doi: 10.1126/science.aat5055
    [36] ZUO L, SHI X L, FU W F, et al. Highly efficient semitransparent solar cells with selective absorption and tandem architecture[J]. Advanced Materials,2019,31(36):1901683. doi: 10.1002/adma.201901683
    [37] CHEN W, ZHU Y D, XIU J W, et al. Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer[J]. Nature Energy,2022,7(3):229-237. doi: 10.1038/s41560-021-00966-8
    [38] PEÑA-CAMARGO F, CAPRIOGLIO P, ZU F. Halide segregation versus interfacial recombination in bromide-rich wide-gap perovskite solar cells[J]. ACS Energy Letters,2020,5(8):2728-2736. doi: 10.1021/acsenergylett.0c01104
    [39] MAHESH S, BALL J M, OLIVER R D J, et al. Revealing the origin of voltage loss in mixed-halide perovskite solar cells[J]. Energy & Environmental Science,2020,13(1):258-267.
    [40] XIE Y M, NIU T, YAO Q, et al. Understanding the role of interconnecting layer on determining monolithic perovskite/organic tandem device carrier recombination properties[J]. Journal of Energy Chemistry,2022,71:12-19. doi: 10.1016/j.jechem.2022.03.019
    [41] KO Y, PARK H J, LEE C, et al. Recent progress in interconnection layer for hybrid photovoltaic tandems[J]. Adanced Materials,2020,32(51):2002196. doi: 10.1002/adma.202002196
    [42] WU X, LIU Y Z, QI F, et al. Improved stability and efficiency of perovskite/organic tandem solar cells with an all-inorganic perovskite layer[J]. Journal of Materials Che-mistry A,2021,9(35):19778-19787. doi: 10.1039/D0TA12286F
    [43] TODOROV T K, GERSHON T S, GUNAWAN O, et al. Monolithic perovskite-CIGS tandem solar cells via in situ band gap engineering[J]. Advanced Energy Materials,2015,5(23):1500799. doi: 10.1002/aenm.201500799
    [44] HSU C H, HO W H, WEI S Y, et al. Over 14% efficiency of directly sputtered Cu(In, Ga)Se2 absorbers without postselenization by post-treatment of alkali metals[J]. Advanced Energy Materials,2017,7(13):1602571. doi: 10.1002/aenm.201602571
    [45] ISHIZUKA S, NISHINAGA J, IIOKA M, et al. Si-doped Cu(In, Ga)Se2 photovoltaic devices with energy conversion efficiencies exceeding 165% without a buffer layer[J]. Advanced Energy Materials,2018,8(11):1702391.
    [46] JOŠT M, BERTRAM T, KOUSHIK D, et al. 216%-efficient monolithic perovskite/Cu(In, Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom cell surfaces[J]. ACS Energy Letters,2019,4(2):583-590.
    [47] JANG Y H, LEE J M, SEO J W, et al. Monolithic tandem solar cells comprising electrodeposited CuInSe2 and perovskite solar cells with a nanoparticulate ZnO buffer layer[J]. Journal of Materials Chemistry A,2017,5(36):19439-19446. doi: 10.1039/C7TA06163C
    [48] UHL A R, RAJAGOPAL A, CLARK J A, et al. Solution-processed low-bandgap CuIn(S, Se)2 absorbers for high-efficiency single-junction and monolithic chalcopyrite-perovskite tandem solar cells[J]. Advanced Energy Materials,2018,8(27):1801254. doi: 10.1002/aenm.201801254
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  1881
  • HTML全文浏览量:  1024
  • PDF下载量:  314
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-11
  • 修回日期:  2022-09-08
  • 录用日期:  2022-09-09
  • 网络出版日期:  2022-09-26
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回