留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机无机转化法制备超高温陶瓷基复合材料技术研究

裴雨辰 孙同臣 刘伟 韩伟健 赵彤

裴雨辰, 孙同臣, 刘伟, 等. 有机无机转化法制备超高温陶瓷基复合材料技术研究[J]. 复合材料学报, 2022, 39(9): 4319-4326. doi: 10.13801/j.cnki.fhclxb.20220922.006
引用本文: 裴雨辰, 孙同臣, 刘伟, 等. 有机无机转化法制备超高温陶瓷基复合材料技术研究[J]. 复合材料学报, 2022, 39(9): 4319-4326. doi: 10.13801/j.cnki.fhclxb.20220922.006
PEI Yuchen, SUN Tongchen, LIU Wei, et al. Research of ultra-high temperature ceramic matrix composites prepared by organic-inorganic transformation[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4319-4326. doi: 10.13801/j.cnki.fhclxb.20220922.006
Citation: PEI Yuchen, SUN Tongchen, LIU Wei, et al. Research of ultra-high temperature ceramic matrix composites prepared by organic-inorganic transformation[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4319-4326. doi: 10.13801/j.cnki.fhclxb.20220922.006

有机无机转化法制备超高温陶瓷基复合材料技术研究

doi: 10.13801/j.cnki.fhclxb.20220922.006
基金项目: 国家自然科学基金(21803062)
详细信息
    通讯作者:

    裴雨辰,博士,研究员,航天科工集团先进材料技术领域首席专家,研究方向为航天特种材料 E-mail: d7jsb88@88.com

  • 中图分类号: TB332

Research of ultra-high temperature ceramic matrix composites prepared by organic-inorganic transformation

Funds: National Natural Science Foundation of China(21803062)
  • 摘要: 超高温陶瓷基复合材料是以连续碳纤维为增强体、超高温陶瓷为基体的一类复合材料,具有密度低、韧性好、耐高温、抗氧化及耐烧蚀等优异性能,在新型高速飞行器热结构应用方面有着不可替代的作用。碳纤维增强体和陶瓷基体是超高温陶瓷基复合材料的两个重要组成部分,对复合材料使役性能起着决定性作用,但是,碳纤维与陶瓷基体的理化性质差异大,如何将碳纤维与陶瓷基体进行有效复合,以便充分发挥碳纤维轻质、高强韧特性与陶瓷基体抗氧化、耐烧蚀特性,是超高温陶瓷基复合材料基础研究和工程应用需要解决的主要问题。本文论述了有机无机转化法制备超高温陶瓷基复合材料技术的发展思路,介绍了超高温有机陶瓷前驱体的设计与合成、C/ZrC-SiC和C/HfTaC-ZrC-SiC复合材料的研究结果,探讨了解决新型高速飞行器高温气动/燃气环境氧化烧蚀问题的材料技术方案,为连续纤维增强超高温陶瓷基复合材料的技术发展和工程应用提供借鉴。

     

  • 图  1  有机无机转化法过程示意图

    Figure  1.  Schematic diagram of organic-inorganic transformation

    图  2  过渡金属配位稳定可控水解聚合技术路线示意图

    Figure  2.  Schematic diagram of stable coordination and controlled hydrolysis polymerization of transition metal

    M—Metal atom

    图  3  锆硅陶瓷前驱体固化物和裂解产物的结构表征:(a) 250℃固化物的SEM图像;(b) 1400℃裂解后产物的XRD图谱;(c) 1400℃裂解后产物的STEM图像

    Figure  3.  Structural characterization of zirconium silicon ceramic precursor cured product and pyrolysis product: (a) SEM image of product cured at 250℃; (b) XRD patterns of products pyrolyzed at 1400℃; (c) STEM images of products pyrolyzed at 1400℃

    图  4  C/ZrC-SiC复合材料拉伸前 (a) 和拉伸后 (b) 的截面SEM图像

    Figure  4.  Cross-sectional SEM images of C/ZrC-SiC composites before (a) and after (b) stretched

    图  5  铪钽陶瓷前驱体1600℃裂解后生成的陶瓷产物SEM图像

    Figure  5.  SEM images of products of hafnium tantalum ceramic precursor pyrolyzed at 1600℃

    图  6  C/HfTaC-ZrC-SiC复合材料的SEM图像及相应EDS面扫描图像

    Figure  6.  SEM images and EDS images of C/HfTaC-ZrC-SiC composites

    图  7  C/HfTaC-ZrC-SiC复合材料在高温烧蚀后表面的SEM图像 ((a)~(b)) 和材料在高温水氧环境下烧蚀机制示意图 (c)

    Figure  7.  SEM images of C/HfTaC-ZrC-SiC composites after arc heated tunnel experiment ((a)-(b)) and illustration of the ablation mechanism in high temperature water-oxygen coupling environment (c)

  • [1] MERCIER R, MCCLINTON C. Hypersonic propulsion-transforming the future of flight[C]//Aiaa International Air & Space Symposium & Exposition: the Next 100 Years. Dayton, 2003.
    [2] 蔡国飙, 徐大军. 高超声速飞行器技术[M]. 北京: 科学出版社, 2012.

    CAI Guobiao, XU Dajun. Hypersonic vehicle technology[M]. Beijing: Science Press, 2012(in Chinese).
    [3] BEHRENS B, MULLER M. Technologies for thermal protection systems applied on reusable launcher[J]. Acta Astronautica,2004,55(3-9):529-536. doi: 10.1016/j.actaastro.2004.05.034
    [4] VANWIE D M, DREWRY J R D G, KING D E, et al. The hypersonic environment: Required operating conditions and design challenges[J]. Journal of Materials Science,2004,39:5915-5924. doi: 10.1023/B:JMSC.0000041688.68135.8b
    [5] SAVINO R, FUMO M D S, PATERNA D, et al. Aerothermodynamic study of UHTC-based thermal protection systems[J]. Aerospace Science and Technology,2005,9:151-160. doi: 10.1016/j.ast.2004.12.003
    [6] ZHOU Z J, DU J, SONG S X, et al. Microstructural characterization of W/Cu functionally graded materials produced by a one-step resistance sintering method[J]. Journal of Alloys and Compounds,2007,428:146-150. doi: 10.1016/j.jallcom.2006.03.073
    [7] ROSENBERG S D, SCHOENMAN L. New generation of high-performance engines for space propulsion[J]. Journal of Propulsion and Power,1994,10:40-46. doi: 10.2514/3.23709
    [8] CHEN Z, WU W, CHENG H, et al. Microstructure and evolution of iridium coating on the C/C composites ablated by oxyacetylene torch[J]. Acta Astronautica,2010,66:682-687. doi: 10.1016/j.actaastro.2009.08.008
    [9] 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2): 1-6.

    ZHANG L T, CHENG L F, Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2007, 24(2): 1-6(in Chinese).
    [10] PAUL A, JAYASEELAN D, VENUGOPAL S. UHTC compo-sites for hypersonic applications[J]. The American Ceramic Society Bulletin,2011,291:22-28.
    [11] ZHANG Q M. Research on CMC for aerospace applications[J]. Aerospace Materials & Technology,2011,6:1-3.
    [12] WANG Z G, LIANG J H, DING M, et al. A review on hypersonic airbreathing propulsion system[J]. Advances in Mechanics,2009,39:716-739.
    [13] JACKSON T A, EKLUND D R, FINK A J. High speed propulsion: Performance advantage of advanced materials[J]. Journal of Materials Science,2004,39:5905-5913. doi: 10.1023/B:JMSC.0000041687.37448.06
    [14] SQUIRE T H, MARSCHALL J. Material property requirements for analysis and design of UHTC components in hypersonic applications[J]. Journal of the European Ceramic Society,2010,30:2239-2251. doi: 10.1016/j.jeurceramsoc.2010.01.026
    [15] ZHU T, XU L, ZHANG X, et al. Densification, microstructure and mechanical properties of ZrB2-SiCw ceramic composites[J]. Journal of the European Ceramic Society,2009,29:2893-2901. doi: 10.1016/j.jeurceramsoc.2009.03.008
    [16] 王海龙, 汪长安, 张锐, 等. 纳米SiC晶须和SiC颗粒混合增韧ZrB2陶瓷性能[J]. 复合材料学报, 2009, 26:95-101. doi: 10.3321/j.issn:1000-3851.2009.04.017

    WANG H L, WANG C A, ZHANG R, et al. Properties of ZrB2 ceramics reinforced by SiC nanowhiskers and SiC particles[J]. Acta Materiae Compositae Sinica,2009,26:95-101(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.04.017
    [17] ZHANG X, WANG Z, SUN X, et al. Effect of graphite flake on the mechanical properties of hot pressed ZrB2-SiC ceramics[J]. Materials Letters,2008,62:4360-4362. doi: 10.1016/j.matlet.2008.07.027
    [18] SLIVESTRONI L, FABBRICHE D D, MELANDRI C, et al. Relationships between carbon fiber type and interfacial domain in ZrB2-based ceramics[J]. Journal of the European Ceramic Society,2016,36:17-24. doi: 10.1016/j.jeurceramsoc.2015.09.026
    [19] SHIMADA S. A thermoanalytical study on the oxidation of ZrC and HfC powders with formation of carbon[J]. Solid State Ionics,2002,149:319-326. doi: 10.1016/S0167-2738(02)00180-7
    [20] LI Z Q, LI H J, ZHANG S Y, et al. Microstructures and ablation properties of C/C-SiC-ZrC composites prepared using C/C skeletons with various densities[J]. Ceramics International,2013,39:8173-8181. doi: 10.1016/j.ceramint.2013.03.093
    [21] BERKOWITZ-MATTUCK J B. High-temperature oxidation III. Zirconium and hafnium diborides[J]. Journal of the Electrochemical Society,1966,113:908-914. doi: 10.1149/1.2424154
    [22] HU P, ZHANG X H, HAN J C, et al. Effect of various addi-tives on the oxidation behavior of ZrB2-based ultra-high-temperature ceramics at 1800°C[J]. Journal of the Ameri-can Ceramic Society,2010,93:345-349. doi: 10.1111/j.1551-2916.2009.03420.x
    [23] 成来飞, 张立同, 梅辉, 等. 化学气相渗透工艺制备陶瓷基复合材料[J]. 上海大学学报, 2014, 20:15-32.

    CHENG L F, ZHANG L T, MEI H, et al. Manufacturing of CMCs by chemical vapor infiltration process[J]. Journal of Shanghai University,2014,20:15-32(in Chinese).
    [24] WANG Y G, ZHU X J, ZHANG L T, et al. C/C-SiC-ZrC composites fabricated by reactive melt infiltration with Si0.87Zr0.13 alloy[J]. Ceramics International,2012,38:4337-4343. doi: 10.1016/j.ceramint.2012.02.016
    [25] ZHAO D, ZHANG C G, HU H F, et al. Preparation and characterization of three-dimensional carbon fiber reinforced zirconium carbide composite by precursor infiltration and pyrolysis process[J]. Ceramics International,2001,37:2089-2093.
    [26] YAN B, CHEN Z F, LI C, et al. Ablation morphology and microstructure of 3D or thogonal Cf/SiC composites prepared by PIP[J]. Science and Engineering of Composite Materials,2008,15:71-77. doi: 10.1515/SECM.2008.15.1.71
    [27] KRUT D P, BORZOV M V, LEMENOVSKII D A, et al. Synthesis and reactivity of metal-containing monomers. Part 59. Preparation and polymerization transformations of vinyl and isopropenyl derivatives of hafnocene dichloride[J]. Russian Chemical Bulletin International Edition,2005,54:247-251. doi: 10.1007/s11172-005-0244-1
    [28] SACKS M D, WANG C A, YANG Z, et al. Carbothermal reduction synthesis of nanocrystalline zirconium carbide and hafnium carbide powders using solution-derived precursors[J]. Journal of Materials Science,2004,39:6057-6066. doi: 10.1023/B:JMSC.0000041702.76858.a7
    [29] 曹淑伟, 谢征芳, 王军, 等. 聚锆碳硅烷陶瓷先驱体的制备与表征[J]. 高分子学报, 2008(6):621-625. doi: 10.3321/j.issn:1000-3304.2008.06.018

    CAO S W, XIE Z F, WANG J, et al. Synthesis and characterization of polyzirconocarbosilane precursor[J]. Acta Polymerica Sinica,2008(6):621-625(in Chinese). doi: 10.3321/j.issn:1000-3304.2008.06.018
    [30] 孔玮佳, 于守泉, 戈敏, 等. 碳化锆陶瓷有机前驱体的热解过程[J]. 过程工程学报, 2019, 19:624-630. doi: 10.12034/j.issn.1009-606X.218299

    KONG W J, YU S Q, GE M, et al. Pyrolysis of an organic polymeric precursor of zirconium carbide ceramics[J]. The Chinese Journal of Process Engineering,2019,19:624-630(in Chinese). doi: 10.12034/j.issn.1009-606X.218299
    [31] LI Q G, DONG S M, WANG Z, et al. Microstructures and mechanical properties of 4-directional, Cf/ZrC-SiC composites using ZrC precursor and polycarbosilane[J]. Materials Science and Engineering B,2013,178:1186-1190. doi: 10.1016/j.mseb.2013.07.001
    [32] HU H F, WANG Q K, CHEN Z H, et al. Preparation and characterization of C/SiC-ZrB2 composites by precursor infiltration and pyrolysis process[J]. Ceramics International,2010,36:1011-1016. doi: 10.1016/j.ceramint.2009.11.015
    [33] CAI T, QIU W F, LIU D, et al. Synthesis of soluble polyyne polymers containing zirconium and silicon and corresponding conversion to nanosized ZrC/SiC composite ceramics[J]. Dalton Trans,2013,42:4285-4290. doi: 10.1039/c2dt32428h
    [34] CAI T, QIU W F, LIU D, et al. Synthesis, characterization, and microstructure of hafnium boride-based composite ceramics via preceramic method[J]. Journal of the Ameri-can Ceramic Society,2013,96:1999-2004. doi: 10.1111/jace.12270
    [35] LU Y, YE L, HAN W J, et al. Synthesis, characterization and microstructure of tantalum carbide-based ceramics by liquid polymeric precursor method[J]. Ceramics International,2015,41:12475-12479. doi: 10.1016/j.ceramint.2015.06.023
    [36] CAI T, QIU W, LIU D, et al. Synthesis of ZrC-SiC powders by a preceramic solution route[J]. Journal of the American Ceramic Society,2013,96:3023-3026. doi: 10.1111/jace.12551
    [37] LIU D, QIU W, CAI T, et al. Synthesis, characterization, and microstructure of ZrC/SiC composite ceramic via liquid precursor conversion method[J]. Journal of the American Ceramic Society,2014,97:1242-1247. doi: 10.1111/jace.12876
    [38] 孙同臣, 于新民, 王涛, 等. 锆组元改性Cf/SiC的制备及烧蚀性能[J]. 宇航材料工艺, 2015, 45(4):35-39. doi: 10.3969/j.issn.1007-2330.2015.04.008

    SUN T C, YU X M, WANG T, et al. Preparation and anti-ablation property of Cf/SiC composites modified by zirconium element[J]. Aerospace Materials & Technology,2015,45(4):35-39(in Chinese). doi: 10.3969/j.issn.1007-2330.2015.04.008
    [39] 刘伟, 宋环君, 于艺, 等. PIP法制备C/ZrC-SiC复合材料工艺与性能研究[J]. 宇航材料工艺, 2019(4):41-44.

    LIU W, SONG H J, YU Y, et al. Process and properties of C/ZrC-SiC composites prepared by precursor infiltration and pyrolysis[J]. Aerospace Materials & Technology,2019(4):41-44(in Chinese).
  • 加载中
图(7)
计量
  • 文章访问数:  598
  • HTML全文浏览量:  214
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-04
  • 修回日期:  2022-09-09
  • 录用日期:  2022-09-20
  • 网络出版日期:  2022-09-26
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回