留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同种类纤维增强复合材料湿热老化性能对比

吴瑞 李岩 于涛

吴瑞, 李岩, 于涛. 不同种类纤维增强复合材料湿热老化性能对比[J]. 复合材料学报, 2022, 39(9): 4406-4419. doi: 10.13801/j.cnki.fhclxb.20220916.002
引用本文: 吴瑞, 李岩, 于涛. 不同种类纤维增强复合材料湿热老化性能对比[J]. 复合材料学报, 2022, 39(9): 4406-4419. doi: 10.13801/j.cnki.fhclxb.20220916.002
WU Rui, LI Yan, YU Tao. Comparative study on the hygrothermal durability of different fiber reinforced composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4406-4419. doi: 10.13801/j.cnki.fhclxb.20220916.002
Citation: WU Rui, LI Yan, YU Tao. Comparative study on the hygrothermal durability of different fiber reinforced composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4406-4419. doi: 10.13801/j.cnki.fhclxb.20220916.002

不同种类纤维增强复合材料湿热老化性能对比

doi: 10.13801/j.cnki.fhclxb.20220916.002
基金项目: 科技部重点研发计划重点专项项目(2020 YFD1100400);国家自然科学基金委中英牛顿高级学者(12061130201)
详细信息
    通讯作者:

    李岩,博士,教授,博士生导师,研究方向为纤维增强树脂基复合材料力学高性能化和耐久性 E-mail: liyan@tongji.edu.cn

  • 中图分类号: TB332

Comparative study on the hygrothermal durability of different fiber reinforced composites

Funds: National Key Research and Development Program (2020 YFD1100400); Royal Society-Newton Advanced Fellowship (12061130201)
  • 摘要: 为研究碳纤维、玻璃纤维和植物纤维增强复合材料在湿热环境下的耐久性能差异,本文制备了纤维体积分数为60vol%的单向碳纤维/环氧树脂复合材料(Carbon fiber reinforced polymer,CFRP)、玻璃纤维/环氧树脂复合材料(Glass fiber reinforced polymer,GFRP)和亚麻纤维/环氧树脂复合材料(Flax fiber reinforced polymer,FFRP),在23℃、37.8℃和60℃下进行了吸水试验,并测试了三种复合材料在厚度方向的膨胀率、拉伸性能和层间剪切性能,同时利用时温等效原理对它们的长期吸水性能及力学性能进行了预测。结果表明,三种复合材料的吸水行为在老化前期均符合Fickian扩散定律,而后期有所偏离。从吸水性能来看,FFRP具有最高的扩散系数、饱和吸水率和膨胀率。从力学性能来看,CFRP的拉伸性能随老化时间的增加几乎不变,而层间剪切强度小幅下降,烘干后其拉伸性能及层间剪切性能与未老化时相同, CFRP在老化过程中未发生不可逆变化。GFRP老化后的拉伸强度和层间剪切强度下降幅度较大,而拉伸模量下降幅度较小,烘干后拉伸性能得到部分恢复,而层间剪切强度则基本未有任何恢复,GFRP在老化过程中发生了玻璃纤维水解及界面脱粘等不可逆变化。由于吸水后亚麻纤维的塑化,FFRP的拉伸强度略微提高,而拉伸模量和层间剪切强度则急剧下降后保持稳定,烘干后,其拉伸强度反而大幅下降,拉伸模量及层间剪切强度则大幅上升,这与水分的塑化作用、纤维及基体的膨胀和降解等变化有关。由三种复合材料的长期性能预测结果可知,CFRP的长期力学性能保持率较好,GFRP的长期力学性能保持率较差,FFRP在拉伸强度保持率方面具有优势,研究结果为湿热环境下工程结构的选材和设计提供了一定的理论依据。

     

  • 图  1  复合材料吸水曲线及Fickian拟合结果对比:(a) CFRP;(b) GFRP;(c) FFRP

    Figure  1.  Water absorption curves and Fickian fitting results of composites: (a) CFRP; (b) GFRP; (c) FFRP

    图  2  三种复合材料的吸水机制:(a) CFRP;(b) GFRP;(c) FFRP

    Figure  2.  Water absorption mechanism of three kinds of composites: (a) CFRP; (b) GFRP; (c) FFRP

    S1-S3—Secondary layer 1-3; P—Primary layer; MFA—Microfibril angle

    图  3  三种复合材料厚度膨胀率随时间的变化曲线

    Figure  3.  Variation of thickness swelling rate with immersion time of three kinds of composites

    图  4  三种复合材料厚度方向膨胀率随吸水率的变化曲线

    Figure  4.  Variation of thickness swelling rate with moisture content of three kinds of composites

    图  5  三种复合材料拉伸性能保持率变化曲线:(a) 拉伸强度保持率;(b) 拉伸模量保持率

    Figure  5.  Evolution of tensile properties retention rate of three kinds of composites: (a) Tensile strength retention rate; (b) Tensile modulus retention rate

    图  6  三种复合材料老化50天再烘干前后的拉伸性能保持率:(a) 拉伸强度保持率;(b) 拉伸模量保持率

    Figure  6.  Tensile properties retention rate of three kinds of composites aged for 50 days and dried: (a) Tensile strength retention rate; (b) Tensile modulus retention rate

    图  7  三种复合材料拉伸试验典型的应力-应变曲线

    Figure  7.  Typical stress-strain curves for three kinds of composites obtained from tensile tests

    图  8  三种复合材料拉伸断面微观形貌:((a), (c), (e)) 未老化;((b), (d), (f)) 老化后

    Figure  8.  Microstructure of tensile failure surfaces of three kinds of composites: ((a), (c), (e)) Unaged; ((b), (d), (f)) Aged

    图  9  三种复合材料层间剪切强度保持率

    Figure  9.  Evolution of interlaminar shear strength retention rate of three kinds of composites

    图  10  三种复合材料老化50天再烘干前后的层间剪切性能保持率

    Figure  10.  Interlaminar shear strength retention rate of three kinds of composites aged for 50 days and dried

    图  11  复合材料短梁剪切试验典型的力-位移曲线

    Figure  11.  Typical force-displacement curves for three kinds of composites obtained from short beam shear tests

    图  12  三种复合材料对数坐标主曲线

    Figure  12.  Master curves in logarithmic coordinate of three kinds of composites

    Mt/bT—Water absorption after conversion; t—Aging time

    图  13  三种复合材料的平移因子${\alpha _T}$的Arrhenius拟合

    Figure  13.  Arrhenius fitting to shift factor ${\alpha _T}$ of three kinds of composites

    图  14  三种复合材料23℃吸水性能预测曲线

    Figure  14.  Prediction of water absorption curves at 23℃ of three kinds of composites

    图  15  三种复合材料力学性能预测结果:(a) 拉伸性能;(b) 层间剪切性能

    Figure  15.  Prediction of mechanical properties of three kinds of composites: (a) Tensile properties; (b) Interlaminar shear property

    表  1  碳纤维/环氧树脂复合材料(CFRP)、玻璃纤维/环氧树脂复合材料(GFRP)和亚麻纤维/环氧树脂复合材料(FFRP)试样铺层方案

    Table  1.   Stacking sequence of the carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP) and flax fiber reinforced polymer (FFRP)

    Composite specimen codeThickness/mm
    25
    CFRP[11 C][27 C]
    GFRP[14 G][36 G]
    FFRP[9 F][21 F]
    Notes: C—CFRP ply; G—GFRP ply; F—FFRP ply.
    下载: 导出CSV

    表  2  复合材料吸水性能参数

    Table  2.   Summary of water absorption parameters

    Composite specimen codeT/℃nk/hn$ {M_{\text{m}}} $/%$ {k'} $D/(10−3 mm2·h−1)
    CFRP230.4380.0290.6490.0130.301
    37.80.4360.0420.6780.0190.643
    600.4540.0540.7820.0331.365
    GFRP230.4700.0280.6840.0170.508
    37.80.4390.0410.7390.0220.665
    600.4330.0660.8010.0361.622
    FFRP230.4620.09012.0650.9564.933
    37.80.4680.12212.4531.2848.343
    600.4620.16912.7041.75114.922
    Notes: T—Aging temperature; n—Parameter describing the swelling mechanism; k—Diffusion constant; Mm—Maximum moisture uptake at equilibrium state; k’—Slope of linear portion of the sorption curves; D—Diffusion coefficient of the composites.
    下载: 导出CSV

    表  3  三种复合材料未老化及老化50天后的拉伸性能

    Table  3.   Tensile properties of three kinds of composites unaged and aged for 50 days

    Composite specimen codeTensile strength/MPaTensile modulus/GPa
    0 day50 days0 day50 days
    CFRP 1173.33±120.55 1177.23±86.84 111.57±1.21 113.04±3.25
    GFRP 814.15±23.30 633.40±20.03 39.49±2.40 37.62±1.03
    FFRP 320.67±27.30 326.57±1.13 23.59±1.61 7.61±0.51
    下载: 导出CSV

    表  4  三种复合材料未老化及老化120天后的层间剪切强度

    Table  4.   Interlaminar shear strength of three kinds of composites unaged and aged for 120 days

    Composite
    specimen code
    Shear strength/MPa
    0 day120 days
    CFRP45.16±1.7939.92±1.22
    GFRP34.01±1.0521.71±0.05
    FFRP28.76±0.7913.41±0.23
    下载: 导出CSV

    表  5  三种复合材料的平移因子${\alpha _T}$和垂直位移因子${b_T}$

    Table  5.   Summary of shift factors ${\alpha _T}$ and vertical displacement factor ${b_T}$ for three kinds of composites

    Composite specimen codeTemperature T/℃${b_T}$${\alpha _T}$
    CFRP2311
    37.81.044030.43013
    601.204390.20793
    GFRP2311
    37.81.080020.64726
    601.513270.21933
    FFRP2311
    37.81.032160.55304
    601.052960.27226
    下载: 导出CSV
  • [1] RAVISHANKAR B, NAYAK S K, KADER M A. Hybrid composites for automotive applications—A review[J]. Journal of Reinforced Plastics and Composites,2019,38(18):835-845. doi: 10.1177/0731684419849708
    [2] YANG X D, AN T, ZOU T C, et al. Effect of hygrothermal environment on mechanical properties and damage mecha-nism of CFRP[J]. Journal of Materials Engineering,2019,47(7):84-91.
    [3] ABANILLA M A, LI Y, KARBHARI V M. Durability characterization of wet layup graphite/epoxy composites used in external strengthening[J]. Composites Part B: Engineering,2006,37(2-3):200-212.
    [4] LI D, LIN H, CUI D, et al. Weatherability and hygrothermal ageing properties of CFRP plates[J]. Journal of Materials Science and Engineering,2018,36(4):535-540.
    [5] FENG Z Y, MOU H L, XIE J, et al. Hygrothermal environment effects on mechanical properties of T700/3228 CFRP laminates[J]. Materials Testing,2019,61(9):857-863. doi: 10.3139/120.111397
    [6] 冯青, 李敏, 顾轶卓, 等. 不同湿热条件下碳纤维/环氧复合材料湿热性能实验研究[J]. 复合材料学报, 2010, 27(6):16-20. doi: 10.13801/j.cnki.fhclxb.2010.06.030

    FENG Qing, LI Min, GU Yizhuo, et al. Experimental research on hygrothermal properties of carbon fiber/epoxy resin composite under different hygrothermal conditions[J]. Acta Materiae Compositae Sinica,2010,27(6):16-20(in Chinese). doi: 10.13801/j.cnki.fhclxb.2010.06.030
    [7] 高坤, 史汉桥, 孙宝岗, 等. 湿热老化对玻璃纤维/环氧树脂复合材料性能的影响[J]. 复合材料学报, 2016, 33(6):1147-1152. doi: 10.13801/j.cnki.fhclxb.20160108.001

    GAO Kun, SHI Hanqiao, SUN Baogang, et al. Effects of hydro-thermal aging on properties of glass fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2016,33(6):1147-1152(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160108.001
    [8] ZHONG Y, CHEN M, ZHANG X, et al. Hygrothermal durability of glass and carbon fiber reinforced composites-A comparative study[J]. Composite Structures,2019,211:134-143. doi: 10.1016/j.compstruct.2018.12.034
    [9] YANG S L, LIU W Q, FANG Y, et al. Influence of hygrother-mal aging on the durability and interfacial performance of pultruded glass fiber-reinforced polymer composites[J]. Journal of Materials Science,2019,54(3):2102-2121. doi: 10.1007/s10853-018-2944-6
    [10] GRAMMATIKOS S A, EVERNDEN M, MITCHELS J, et al. On the response to hygrothermal aging of pultruded FRPs used in the civil engineering sector[J]. Materials & Design,2016,96:283-295.
    [11] CHEOUR K, ASSARAR M, SCIDA D, et al. Effect of water ageing on the mechanical and damping properties of flax-fibre reinforced composite materials[J]. Composite Structures,2016,152:259-266. doi: 10.1016/j.compstruct.2016.05.045
    [12] 贾云龙, BODO F. 吸湿对单向亚麻纤维复合材料力学性能的影响[J]. 复合材料学报, 2022, 39(2):608-616.

    JIA Yunlong, BODO F. Influence of moisture absorption on the mechanical properties of unidirectional flax fibre composites[J]. Acta Materiae Compositae Sinica,2022,39(2):608-616(in Chinese).
    [13] LI Y, XUE B. Hydrothermal ageing mechanisms of unidirectional flax fabric reinforced epoxy composites[J]. Polymer Degradation and Stability,2016,126:144-158. doi: 10.1016/j.polymdegradstab.2016.02.004
    [14] MUNOZ E, GARCIA-MANRIQUE J A. Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites[J]. International Journal of Polymer Science,2015,2015:390275.
    [15] CHA J, YOON S. Determination of shift factor for long-term life prediction of carbon/fiber epoxy composites using the time-temperature superposition principle[J]. Functional Composites and Structures,2022,4(1):015003. doi: 10.1088/2631-6331/ac529e
    [16] LU J, XIAO Y. Improved approach to modelling preload relaxation in bolted composite joints[J]. Engineering Mechanics,2018,35(10):229-237.
    [17] PENG H, ZHAN T, JIANG J, et al. Comparison of the time-moisture and time-temperature equivalences in the creep properties of Chinese fir[J]. Wood Material Science & Engineering, (2021-09-29). [2022-06-24]. https://www.webofscience.com/wos/alldb/full-record/WOS:000697416800001.
    [18] NAKADA M, MIYANO Y. Formulation of time- and temperature-dependent strength of unidirectional carbon fiber reinforced plastics[J]. Journal of Composite Materials,2013,47(15):1897-1906. doi: 10.1177/0021998312452025
    [19] KOYANAGI J, NAKADA M, MIYANO Y. Tensile strength at elevated temperature and its applicability as an accelerated testing methodology for unidirectional composites[J]. Mechanics of Time-Dependent Materials,2012,16(1):19-30. doi: 10.1007/s11043-011-9160-y
    [20] MACHADO M, CAKMAK U D, KALLAI I, et al. Thermomechanical viscoelastic analysis of woven-reinforced thermoplastic-matrix composites[J]. Composite Structures,2016,157:256-264. doi: 10.1016/j.compstruct.2016.08.041
    [21] SUN B, LI Y. The study on hygrothermal aging behavior of composites and the prediction model of durability[J]. Fiber Reinforced Plastics/Composites,2013,4:28-34.
    [22] 李承高, 郭瑞, 王俊琦, 等. CFRP@GFRP混杂复合材料杆体在水浸泡环境下的性能演化[J]. 复合材料学报, 2021, 38(10):3290-3301. doi: 10.13801/j.cnki.fhclxb.20201215.008

    LI Chenggao, GUO Rui, WANG Junqi, et al. Property evolution of CFRP@GFRP hybrid composite rod exposed in the distilled water[J]. Acta Materiae Compositae Sinica,2021,38(10):3290-3301(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201215.008
    [23] American Society of Testing Materials. Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials: ASTM D5229[S]. West Conshohocken: ASTM, 2020.
    [24] American Society of Testing Materials. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039[S]. West Conshohocken: ASTM, 2017.
    [25] American Society of Testing Materials. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: ASTM D2344[S]. West Conshohocken: ASTM, 2016.
    [26] JOSEPH P V, RABELLO M S, MATTOSO L H C, et al. Environmental effects on the degradation behaviour of sisal fibre reinforced polypropylene composites[J]. Composites Science and Technology,2002,62(10-11):1357-1372. doi: 10.1016/S0266-3538(02)00080-5
    [27] SCIDA D, ASSARAR M, POILANE C, et al. Influence of hygrothermal ageing on the damage mechanisms of flax-fibre reinforced epoxy composite[J]. Composites Part B: Engi-neering,2013,48:51-58. doi: 10.1016/j.compositesb.2012.12.010
    [28] SHEN C H, SPRINGER G S. Moisture absorption and desorption of composite materials[J]. Journal of Composite Materials,1976,10:2-20. doi: 10.1177/002199837601000101
    [29] 贺福. 碳纤维及石墨纤维[M]. 北京: 化学工业出版社, 2010: 364-368.

    HE Fu. Carbon fibre and graphite fibre[M]. Beijing: Chemical industry press, 2010: 364-368(in Chinese).
    [30] BROWN E N, DAVIS A K, JONNALAGADDA K D, et al. Effect of surface treatment on the hydrolytic stability of E-glass fiber bundle tensile strength[J]. Composites Science and Technology,2005,65(1):129-136. doi: 10.1016/j.compscitech.2004.07.001
    [31] FEIH S, MOURITZ A P, CASE S W. Determining the mechanism controlling glass fibre strength loss during thermal recycling of waste composites[J]. Composites Part A: Applied Science and Manufacturing,2015,76:255-261. doi: 10.1016/j.compositesa.2015.06.006
    [32] MITTAL V, SAINI R, SINHA S. Natural fiber-mediated epoxy composites-A review[J]. Composites Part B: Engi-neering,2016,99:425-435. doi: 10.1016/j.compositesb.2016.06.051
    [33] CHILALI A, ASSARAR M, ZOUARI W, et al. Analysis of the hydro-mechanical behaviour of flax fibre-reinforced composites: Assessment of hygroscopic expansion and its impact on internal stress[J]. Composite Structures,2018,206:177-184. doi: 10.1016/j.compstruct.2018.08.037
    [34] LE DUIGOU A, DAVIES P, BALEY C. Exploring durability of interfaces in flax fibre/epoxy micro-composites[J]. Composites Part A: Applied Science and Manufacturing,2013,48:121-128. doi: 10.1016/j.compositesa.2013.01.010
    [35] SHI S Q, GARDNER D J. Effect of density and polymer content on the hygroscopic thickness swelling rate of compression molded wood fiber/polymer composites[J]. Wood and Fiber Science,2006,38(3):520-526.
    [36] BOURMAUD A, MORVAN C, BOUALI A, et al. Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers[J]. Industrial Crops and Products,2013,44:343-351. doi: 10.1016/j.indcrop.2012.11.031
    [37] 过梅丽. 高分子物理[M]. 北京: 北京航空航天大学出版社, 2005: 206-209.

    GUO Meili. Polymer physics[M]. Beijing: Beihang University Press, 2005: 206-209(in Chinese).
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  895
  • HTML全文浏览量:  295
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-27
  • 修回日期:  2022-08-24
  • 录用日期:  2022-09-13
  • 网络出版日期:  2022-09-19
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回