留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳/碳复合材料的激光烧蚀行为与机制

耿莉 成溯 付前刚 李贺军

耿莉, 成溯, 付前刚, 等. 碳/碳复合材料的激光烧蚀行为与机制[J]. 复合材料学报, 2022, 39(9): 4337-4343. doi: 10.13801/j.cnki.fhclxb.20220825.002
引用本文: 耿莉, 成溯, 付前刚, 等. 碳/碳复合材料的激光烧蚀行为与机制[J]. 复合材料学报, 2022, 39(9): 4337-4343. doi: 10.13801/j.cnki.fhclxb.20220825.002
GENG Li, CHENG Su, FU Qian'gang, et al. Laser ablation behavior and mechanism of carbon/carbon composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4337-4343. doi: 10.13801/j.cnki.fhclxb.20220825.002
Citation: GENG Li, CHENG Su, FU Qian'gang, et al. Laser ablation behavior and mechanism of carbon/carbon composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4337-4343. doi: 10.13801/j.cnki.fhclxb.20220825.002

碳/碳复合材料的激光烧蚀行为与机制

doi: 10.13801/j.cnki.fhclxb.20220825.002
基金项目: 国家自然科学基金委员会国际(地区)合作与交流项目(52061135102)
详细信息
    通讯作者:

    李贺军,中国工程院院士,博士,教授,博士生导师,研究方向为碳/碳复合材料、抗氧化/烧蚀涂层、碳纤维增强纸基与金属基复合材料等 E-mail: lihejun@nwpu.edu.cn

  • 中图分类号: TB332

Laser ablation behavior and mechanism of carbon/carbon composites

Funds: National Natural Science Foundation of China (No. 52061135102)
  • 摘要: 碳/碳(C/C)复合材料作为性能优良的耐烧蚀材料得到了广泛的应用,其作为抗激光烧蚀材料的潜力待被发掘。本文制备了不同密度的C/C复合材料,在无氧环境下以CO2激光器为光源,探究了高能激光与C/C复合材料之间的作用机制,系统地分析了材料的特性和激光参数不同对烧蚀表现的影响。采用三维轮廓仪对线烧蚀率进行表征。结果表明,随着烧蚀时间或激光功率的变化,C/C复合材料的烧蚀表现均为非线性变化。C/C复合材料的本征特性决定了其热量载荷。密度越高的C/C复合材料,其热量载荷越高,烧蚀性能越好。热量载荷与激光热流密度之间的关系则决定了材料的烧蚀表现,当激光的热流密度大于材料的热流载荷时,烧蚀速率会呈阶跃式攀升。

     

  • 图  1  激光烧蚀设备的原理示意图[16]

    Figure  1.  Schematic diagram of laser ablation equipment[16]

    图  2  C/C复合材料导热系数随温度的变化曲线

    Figure  2.  Thermal conductivity of C/C composites with different densities versus temperature

    图  3  低氧环境下C/C复合材料激光烧蚀100 s后的表面形貌及微观形貌:((a), (d)) C/C-ρ1.3;((b), (e)) C/C-ρ1.7;((c), (f)) C/C-ρ1.9

    Figure  3.  Surface morphologies and microstructure of C/C composites after laser ablation for 100 s in low oxygen environment: ((a), (d)) C/C-ρ1.3; ((b), (e)) C/C-ρ1.7; ((c), (f)) C/C-ρ1.9

    图  4  (a) C/C-ρ1.3在500 W激光烧蚀100 s后的3D轮廓图;(b) 三种密度C/C复合材料在500 W激光作用下烧蚀深度随烧蚀时间变化的关系

    Figure  4.  (a) 3D profile of C/C-ρ1.3 after laser ablation at 500 W for 100 s; (b) Relationship between ablation time and ablation depth of C/C composites with different densities

    图  5  Knudsen层对激光的衰减作用示意图

    Figure  5.  Diagram of attenuation effect of Knudsen layer on laser energy

    图  6  不同密度C/C复合材料的烧蚀中心温度随烧蚀时间的变化关系

    Figure  6.  Relationship between ablation time and temperature of ablation center with different density of C/C composites

    图  7  C/C复合材料的烧蚀深度随功率变化的关系

    Figure  7.  Relationship between ablation depth and laser power with different density and surface roughness of C/C composites

    图  8  C/C-ρ1.9试样在不同激光参数下的烧蚀形貌:(a) 500 W-5 s;(b) 2500 W-1 s;(c) 2500 W-1 s微观形貌

    Figure  8.  Ablation morphologies of C/C-ρ1.9 sample under different laser parameters: (a) 500 W-5 s; (b) 2500 W-1 s; (c) Microstructure of 2500 W-1 s

    图  9  不同热流密度下C/C-ρ1.9试样烧蚀区域的拉曼分析图谱

    Figure  9.  Raman analysis of ablative region of C/C-ρ1.9 sample under different heat flux

    ID/IG—Intensity ratio of peak D to peak G

    表  1  碳/碳(C/C)复合材料的命名

    Table  1.   Naming of carbon/carbon (C/C) composites

    SampleThickness/mmDensity ρ/(g·cm−3)Diameter/mm
    C/C-ρ1.351.330
    C/C-ρ1.751.730
    C/C-ρ1.951.930
    下载: 导出CSV

    表  2  C/C样品的密度、气孔率和表面粗糙度

    Table  2.   Density, opening rate and surface roughness of C/C composites

    SampleC/C-ρ1.3C/C-ρ1.7C/C-ρ1.9
    Average density/(g·cm−3)1.281.701.87
    Opening porosity/%31.08.47.6
    Surface roughness/μm7.647.414.47
    下载: 导出CSV

    表  3  不同热流密度下C/C-ρ1.9试样烧蚀行为的相关参数

    Table  3.   Parameters of C/C-ρ1.9 sample ablation holes with different heat flux

    500 W-5 s500 W-100 s2500 W-1 s
    Total input laser energy/J2500500002500
    Heat flux/(W·mm2)159159796
    Ablation depth/mm0.0200.1094.114
    Linear ablation rate/(mm·s−1)4.0×10−20.1×10−24.114
    下载: 导出CSV
  • [1] LEWIS L J, PEREZ D. Laser ablation with short and ultrashort laser pulses: Basic mechanisms from molecular-dynamics simulations[J]. Applied Surface Science,2009,255(10):5101-5106. doi: 10.1016/j.apsusc.2008.07.116
    [2] RUSSO R E, MAO X, GONZALEZ J J, et al. Laser ablation in analytical chemistry[J]. Analytical Chemistry,2013,85(13):6162-6177. doi: 10.1021/ac4005327
    [3] YUAN L, ZHAO Y, SHANG G, et al. Comparison of femtosecond and nanosecond laser-induced damage in HfO2 single-layer film and HfO2-SiO2 high reflector[J]. Journal of the Optical Society of America B,2007,24(3):538-543. doi: 10.1364/JOSAB.24.000538
    [4] MELE A, GIARDINI G A, FLAMINI C, et al. Fundamental mechanisms of electronic and thermal ejection of material induced by pulsed laser beams[J]. Proceedings of the Indian Academy of Sciences-Chemical Sciences,1998,110(3):163-180. doi: 10.1007/BF02869996
    [5] CHRISTIN F. Design, fabrication, and application of thermostructural composites (TSC) like C/C, C/SiC, and SiC/SiC composites[J]. Advanced Engineering Materials,2002,4(12):903-912. doi: 10.1002/adem.200290001
    [6] SHIRVANIMOGHADDAM K, HAMIM S U, AKBARI M K, et al. Carbon fiber reinforced metal matrix composites: Fabrication processes and properties[J]. Composites Part A: Applied Science & Manufacturing,2017,92:70-96.
    [7] RAN H, CUI H, HAO Z, et al. Influence of carbon-matrix structure on antiablative performances of C/C compo-sites[J]. Carbon,2002,4:20-25.
    [8] LIU Q, ZHANG L, JIANG F, et al. Laser ablation behaviors of SiC-ZrC coated carbon/carbon composites[J]. Surface & Coatings Technology,2011,205(17-18):4299-4303.
    [9] TONG Y, BAI S, HU Y, et al. Laser ablation resistance and mechanism of Si-Zr alloyed melt infiltrated C/C-SiC composite[J]. Ceramics International,2018,44(4):3692-3698. doi: 10.1016/j.ceramint.2017.11.141
    [10] WANG Y, ZHU X, ZHANG L, et al. Reaction kinetics and ablation properties of C/C-ZrC composites fabricated by reactive melt infiltration[J]. Ceramics International,2011,37(4):1277-1283. doi: 10.1016/j.ceramint.2010.12.002
    [11] RUSSO R E, MAO X, LIU H, et al. Laser ablation in analyti-cal chemistry—A review[J]. Talanta,2002,57(3):425-451. doi: 10.1016/S0039-9140(02)00053-X
    [12] CHENG S, GENG L, LIU X C, et al. Laser ablation behavior and mechanism of C/SiC coated with ZrB2-MoSi2-SiC/Mo prepared by HVOF[J]. Ceramics International,2020,46(11):17752-17762. doi: 10.1016/j.ceramint.2020.04.080
    [13] LUAN X, YUAN J, WANG J, et al. Laser ablation behavior of Cf/SiHfBCN ceramic matrix composites[J]. Journal of the European Ceramic Society,2016,36(15):3761-3768. doi: 10.1016/j.jeurceramsoc.2016.04.010
    [14] RAVI K S, LIES B, ZHANG X, et al. Laser ablation of polymers: A review[J]. Polymer International,2019,68(8):1391-1401. doi: 10.1002/pi.5834
    [15] SHIRK M D, MOLIAN P A. A review of ultrashort pulsed laser ablation of materials[J]. Journal of Laser Applications,1998,10(1):18-28. doi: 10.2351/1.521827
    [16] GENG L, LIU X C, FU Q G, et al. Laser ablative behavior of C/C modified by Si reactive infiltration[J]. Carbon,2020,168:650-658. doi: 10.1016/j.carbon.2020.06.079
    [17] ZHANG Y, DAI J, LU X, et al. Effects of temperature on the spectral emissivity of C/SiC composites[J]. Cearmics-Silikaty,2016,60(2):152-155.
    [18] 葛传楠. 计算晶体比热容的两种模型[J]. 江苏教育学院学报(自然科学版), 2013, 29(4):4-6.

    GE C N. Two models for calculating the specific heat capacity of crystals[J]. Journal of Jiangsu Institute of Education (Natural Sciences),2013,29(4):4-6(in Chinese).
    [19] DUAN L Y, ZHAO X, WANG Y G. Comparative ablation behaviors of C/SiC-HfC composites prepared by reactive melt infiltration and precursor infiltration and pyrolysis routes[J]. Ceramics International,2017,43(18):16114-16120. doi: 10.1016/j.ceramint.2017.08.175
    [20] 郑启光, 辜建辉. 激光与物质相互作用[M]. 武汉: 华中理工大学出版社, 1996.

    ZHENG Q G, GU J H. Interaction of laser and material[M]. Wuhan: Huazhong University of Science & Technology Press, 1996(in Chinese).
    [21] KRUER W. The physics of laser plasma interactions[M]. Florida: CRC Press, 2019.
    [22] IKEDA A, MATSUMOTO M, OGURA S, et al. Knudsen layer formation in laser induced thermal desorption[J]. The Journal of Chemical Physics,2013,138(12):124705. doi: 10.1063/1.4795827
    [23] NEDIALKOV N, IMAMOVA S E, ATANASOV P A. Ablation of metals by ultrashort laser pulses[J]. Journal of Physics D: Applied Physics,2004,37(4):638-643. doi: 10.1088/0022-3727/37/4/016
    [24] 姜学东, 陈纪然, 王彧, 等. 蒸气压对激光辐照靶材烧蚀速率的影响[J]. 强激光与粒子束, 2018, 30(2):22-26. doi: 10.11884/HPLPB201830.170271

    JIANG X D, CHEN J R, WANG Y, et al. Effect of vapor pressure on ablation rate of laser irradiated[J]. High Power Laser and Particle Beams,2018,30(2):22-26(in Chinese). doi: 10.11884/HPLPB201830.170271
    [25] NARAYAN J, BHAUMIK A. Novel phase of carbon, ferromagnetism, and conversion into diamond[J]. Journal of Applied Physics,2015,118(21):215303. doi: 10.1063/1.4936595
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  954
  • HTML全文浏览量:  278
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-27
  • 修回日期:  2022-07-23
  • 录用日期:  2022-08-02
  • 网络出版日期:  2022-08-25
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回