留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于航空复合材料的自动铺丝干纤维层间粘结性能

耿奕 宁博 陈吉平 宋清华 刘卫平 袁宇慧 杨洋

耿奕, 宁博, 陈吉平, 等. 用于航空复合材料的自动铺丝干纤维层间粘结性能[J]. 复合材料学报, 2022, 39(9): 4441-4458. doi: 10.13801/j.cnki.fhclxb.20220824.003
引用本文: 耿奕, 宁博, 陈吉平, 等. 用于航空复合材料的自动铺丝干纤维层间粘结性能[J]. 复合材料学报, 2022, 39(9): 4441-4458. doi: 10.13801/j.cnki.fhclxb.20220824.003
GENG Yi, NING Bo, CHEN Jiping, et al. Study on the interlayer bonding property of dry fiber tows used in automated fiber placement for aerospace composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4441-4458. doi: 10.13801/j.cnki.fhclxb.20220824.003
Citation: GENG Yi, NING Bo, CHEN Jiping, et al. Study on the interlayer bonding property of dry fiber tows used in automated fiber placement for aerospace composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4441-4458. doi: 10.13801/j.cnki.fhclxb.20220824.003

用于航空复合材料的自动铺丝干纤维层间粘结性能

doi: 10.13801/j.cnki.fhclxb.20220824.003
基金项目: 上海市科委科技创新行动计划高新技术领域项目(20511107300);上海市扬帆计划项目(19YF1417000);民用航空复合材料东华大学协同创新中心、上海市高性能纤维复合材料协同创新中心(省部共建)开放课题项目(X12812101/021)
详细信息
    通讯作者:

    刘卫平,博士,研究员,研究方向为先进航空复合材料制造 E-mail:liuweiping@comac.cc

  • 中图分类号: TB332

Study on the interlayer bonding property of dry fiber tows used in automated fiber placement for aerospace composites

Funds: Shanghai Commission of Science and Technology Program (No. 20511107300);Shanghai Sailing Program (No.19 YF1417000);Funding of Center for Civil Aviation Composites, Donghua University and Shanghai Collaborative Innovation Center of High Performance Fibers and Composites(Province-Ministry Joint)(No.X12812101/021)
  • 摘要: 为了保证干纤维预成型体的层间良好贴覆,分别对一种成熟应用于航空级主承力构件的干纤维自动铺放材料和一种研发级材料进行层间粘结性研究。采用热压工艺模拟自动铺丝过程,通过T型剥离和多种表征方法测试干纤维层间粘结力、表面性能和定型剂扩展,比较两种干纤维的层间粘结力,并研究其层间粘结机制。研究发现:成熟干纤维的层间粘结力在一定范围内远大于研发干纤维,二者均显著受到层压温度、层压时间及协同作用的影响,但最显著的影响因素不同;干纤维层间粘结机制与干纤维表面性能、定型剂性能及受热扩展过程有关,推测成熟干纤维的较高层间粘结力与定型剂的交联有关;此外,通过自动铺放工艺的验证,在一定层压时间范围内,采用热压工艺代替自动铺丝进行干纤维层间粘结性的评价具有良好可靠性;最后,干纤维表面涂覆热塑性增韧材料后,层间粘结力大幅下降。通过对材料和工艺的研究,本文为干纤维自动铺丝工艺的优化提供了数据及理论支持。

     

  • 图  1  自动铺丝干纤维结构示意图

    Figure  1.  Schematic diagram of dry fiber tows for automatic fiber placement

    图  2  在平板硫化机中压制层合样条

    Figure  2.  Processing of dry fiber tow samples in the curing press

    图  3  用于T形剥离的层合样条结构示意图

    Figure  3.  Schematic diagram of dry fiber tows test samples for T-peel test

    图  4  对层合样条进行T型剥离实验

    Figure  4.  T-peel tests for dry fiber tow samples

    图  5  自动铺丝设备

    Figure  5.  Automated fiber placement machine

    图  6  压力作用时间10 s时成熟干纤维层合样条的T型剥离力-位移曲线:(a) 层压温度110℃;(b) 层压温度140℃;(c) 层压温度170℃;(d) 层间粘结力与标准偏差

    Figure  6.  Relationship curves between T-peel force and displacement for mature dry fiber tow samples with compression time of 10 s: (a) Compression temperature 110℃; (b) Compression temperature 140℃; (c) Compression temperature 170℃; (d) Average T-peel force and standard deviation

    图  7  压力作用时间30 s时成熟干纤维层合样条的T型剥离力-位移曲线:(a) 层压温度110℃;(b) 层压温度140℃;(c) 层压温度170℃;(d) 本测试中平均T型剥离力与标准偏差

    Figure  7.  Relationship curves between T-peel force and displacement for mature dry fiber tow samples wtth compression time of 30 s: (a) Compression temperature 110℃; (b) Compression temperature 140℃; (c) Compression temperature 170℃; (d) Average T-peel force and standard deviation

    图  8  压力作用时间60 s时成熟干纤维层合样条的T型剥离力-位移曲线:(a) 层压温度110℃;(b) 层压温度140℃;(c) 层压温度170℃;(d) 本测试中平均T型剥离力与标准偏差

    Figure  8.  Relationship curves between T-peel force and displacement for mature dry fiber tow samples with compression time of 60 s: (a) Compression temperature 110℃; (b) Compression temperature 140℃; (c) Compression temperature 170℃; (d) Average T-peel force and standard deviation

    图  9  压力作用时间10 s时研发干纤维层合样条的T型剥离力-位移曲线:(a) 层压温度110℃;(b) 层压温度140℃;(c) 层压温度170℃;(d) 本测试中平均T型剥离力与标准偏差

    Figure  9.  Relationship curves between T-peel force and displacement for developing dry fiber tow samples with compression time of 10 s: (a) Compression temperature 110℃; (b) Compression temperature 140℃; (c) Compression temperature 170℃; (d) Average T-peel force and standard deviation

    图  10  压力作用时间30 s时研发干纤维层合样条的T型剥离力-位移曲线:(a) 层压温度110℃;(b) 层压温度140℃;(c) 层压温度170℃;(d) 本测试中平均T型剥离力与标准偏差

    Figure  10.  Relationship curves between T-peel force and displacement for developing dry fiber tow samples with compression time of 30 s: (a) Compression temperature 110℃; (b) Compression temperature 140℃; (c) Compression temperature 170℃; (d) Average T-peel force and standard deviation

    图  11  压力作用时间60 s时研发干纤维层合样条的T型剥离力-位移曲线:(a) 层压温度110℃;(b) 层压温度140℃;(c) 层压温度170℃;(d) 本测试中平均T型剥离力与标准偏差

    Figure  11.  Relationship curves between T-peel force and displacement for developing dry fiber tow samples with compression time of 60 s: (a) Compression temperature 110℃; (b) Compression temperature 140℃; (c) Compression temperature 170℃; (d) Average T-peel force and standard deviation

    图  12  成熟干纤维粘结力的主效应图:(a) 粘结力受层压温度的影响;(b) 粘结力受层压时间的影响

    Figure  12.  Main effect diagram of averaged T-peel force for mature dry fiber tape: (a) T-peel force affected by compression temperature; (b) T-peel force affected by compression time

    图  13  成熟干纤维平均剥离力的交互作用图

    Figure  13.  Interaction diagram of averaged T-peel force for mature dry fiber tape

    图  14  研发干纤维粘结力的主效应图:(a) 粘结力受层压温度的影响;(b) 粘结力受层压时间的影响

    Figure  14.  Main effect diagram of averaged T-peel force for developing dry fiber tape: (a) T-peel force affected by compression temperature; (b) T-peel force affected by compression time

    图  15  研发干纤维平均剥离力的交互作用图

    Figure  15.  Interaction diagram of averaged T-peel force for developing dry fiber tape

    图  16  金相显微镜观察成熟干纤维层合样条T型剥离表面

    Figure  16.  Metallographic observation of T-peel force surface of mature dry fiber tow samples

    图  17  热台显微镜观察成熟干纤维表面定型剂

    Figure  17.  Hot-stage microscopy observation of surface binder on mature dry fiber tow samples

    图  18  环氧树脂与成熟干纤维带在不同温度下的接触角:(a) 成熟干纤维定型剂面在80℃时与环氧树脂的接触角;(b) 成熟干纤维网纱面在80℃时与环氧树脂的接触角;(c) 成熟干纤维定型剂在110℃时与环氧树脂的接触角;(d) 成熟干纤维网纱面在110℃时与环氧树脂的接触角

    Figure  18.  Contact angle between epoxy resin and mature dry fiber tow at varied temperature: (a) Contact angle between epoxy resin and binder surface of mature dry fiber tow at 80℃; (b) Contact angle between epoxy resin and fiber veil surface of mature dry fiber tow at 80℃; (c) Contact angle between epoxy resin and binder surface of mature dry fiber tow at 110℃; (d) Contact angle between epoxy resin and fiber veil surface of mature dry fiber tow at 110℃

    图  19  成熟干纤维的DSC热流-温度曲线

    Figure  19.  Heat flow-temperature curves of mature dry fiber tow samples

    图  20  金相显微镜观察研发干纤维层合样条T型剥离表面

    Figure  20.  Metallographic observation of T-peel force surface of developing dry fiber tow samples

    图  21  热台显微镜观察研发干纤维表面定型剂

    Figure  21.  Hot-stage microscopy observation of surface binder on developing dry fiber tow samples

    图  22  研发干纤维截面方向的显微断层扫描

    Figure  22.  Micro scanning micrograph of developing dry fiber tows along axis cross-section

    图  23  环氧树脂与研发干纤维带在不同温度下的接触角:(a)定型剂面在80℃时与环氧树脂的接触角;(b)网纱面在80℃时与环氧树脂的接触角;(c)定型剂在110℃时与环氧树脂的接触角;(d)网纱面在110℃时与环氧树脂的接触角

    Figure  23.  Contact angle between epoxy resin and developing dry fiber tow at varied temperature: (a) Contact angle between epoxy resin and binder surface at 80℃; (b) Contact angle between epoxy resin and veil surface at 80℃; (c) Contact angle between epoxy resin and binder surface at 110℃; (d) Contact angle between epoxy resin and veil surface at 110℃

    图  24  研发干纤维的DSC热流-温度曲线

    Figure  24.  Heat flow-temperature curve of developing dry fiber tow samples

    图  25  采用自动铺丝设备铺放干纤维预成型体

    Figure  25.  Dry fiber preforms made by automatic fiber placement equipment

    图  26  不同铺丝温度时,成熟干纤维层合样条的T型剥离力-位移曲线:(a) 铺丝温度110℃;(b) 铺丝温度140℃;(c) 铺丝温度170℃;(d) 本测试中平均T型剥离力与标准偏差

    Figure  26.  Relationship curve between T-peel force and displacement for mature dry fiber tow samples when placed by automatic placement machine:(a) Placing temperature 110℃; (b) Placing temperature 140℃; (c) Placing temperature 170℃; (d) Average T-peel force and standard deviation

    图  27  自动铺放干纤维(AFP)样条和热压干纤维样条的平均剥离力对比

    Figure  27.  Comparison of average T-peel force of automated fiber placement (AFP) samples and hot pressing samples

    图  28  涂覆热塑性乳剂与未涂覆乳剂研发干纤维层合样条的平均T型剥离力与标准偏差

    Figure  28.  Average T-peel force and standard deviation of developing dry fiber tow samples coated with and without thermoplastic emulsion

    表  1  实验设计因子及水平信息

    Table  1.   Experiment design factor and levels information

    FactorLevelValue
    Compression temperature/oC3110, 140, 170
    Compression time/s310, 30, 60
    下载: 导出CSV

    表  2  层合样条名称、材料和制备参数

    Table  2.   Name, materials and experiments parameters of test samples

    Sample
    lables
    Compression temperature/℃Compression time/sSample
    material
    MA1101011010Mature
    MA1401014010Mature
    MA1701017010Mature
    MA1103011030Mature
    MA1403014030Mature
    MA1703017030Mature
    MA1106011060Mature
    MA1406014060Mature
    MA1706017060Mature
    DE1101011010Developing
    DE1401014010Developing
    DE1701017010Developing
    DE1103011030Developing
    DE1403014030Developing
    DE1703017030Developing
    DE1106011060Developing
    DE1406014060Developing
    DE1706017060Developing
    下载: 导出CSV

    表  3  成熟干纤维测试结果方差分析

    Table  3.   Analysis of variance of test results of developing dry fiber

    SourcesDegree of freedomAdjusted sum of squares of deviation from meanAdjusted mean valueF-value of
    hypothesis-testing
    P-value of
    hypothesis-testing
    Temperature20.0220.01140.780.000
    Time20.0300.01556.320.000
    Temperature×time40.0180.00416.330.000
    下载: 导出CSV

    表  4  国产干纤维测试结果方差分析

    Table  4.   Analysis of variance of test results of developing dry fiber

    SourcesDegree of freedomAdj SSAdj MSF-valueP-value
    Temperature20.01070.00543.550.000
    Time20.0100.00538.730.000
    Temperature×time40.0060.00112.160.000
    下载: 导出CSV

    表  5  自动铺丝(AFP)实验制备的层合样条名称及制备参数

    Table  5.   Name and experiments parameters of test samples made by automated fiber placement (AFP)

    Sample lablesTarget temperature/℃Setting power/WActual temperature/℃
    AFP110110260107±15
    AFP140140340143±15
    AFP170170420176±15
    下载: 导出CSV
  • [1] SUN S, HAN Z, FU H, et al. Defect characteristics and online detection techniques during manufacturing of FRPs using automated fiber placement: A review[J]. Polymers,2020,12(6):1337-1359. doi: 10.3390/polym12061337
    [2] BUDELMANN D, SCHMIDT C, MEINERS D, et al. Prepreg tack: A review of mechanisms, measurement, and manufacturing implication[J]. Polymer Composites,2020,41(9):3440-3458. doi: 10.1002/pc.25642
    [3] 陈吉平, 李岩, 刘卫平, 等. 连续纤维增强热塑性树脂基复合材料自动铺放原位成型技术的航空发展现状[J]. 复合材料学报, 2019, 36(4):784-794. doi: 10.13801/j.cnki.fhclxb.20190102.001

    CHEN Jiping, LI Yan, LIU Weiping, et al. Development of AFP in-situ consolidation technology on continuous fiber reinforced thermoplastic matrix composites in aviation[J]. Acta Materiae Composite Sinica,2019,36(4):784-794(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190102.001
    [4] 张洋, 钟翔屿, 包建文. 先进树脂基复合材料自动丝束铺放技术研究现状及发展方向[J]. 航空制造技术, 2013, 23: 131-136, 140(in Chinese).

    ZHANG Yang, ZHONG Xiangyu, BAO Jianwen. Research status and future trend of automated fiber placement technology for advanced polymer matrix composites[J]. Aeronautical Manufacturing Technology, 2013, 23: 131-136, 140(in Chinese).
    [5] KADIYALA A K, PORTELA A, DEVLIN K, et al. Mechanical evaluation and failure analysis of composite laminates manufactured using automated dry fibre tape placement followed by liquid resin infusion[J]. Composites Science and Technology,2021,201:108512. doi: 10.1016/j.compscitech.2020.108512
    [6] GINGER G. Resin infused MS-21 wings and wing box[J]. High Performance Composites,2014,1:29.
    [7] JUAN S. OAK aero composites choose innovative solutions to build the MS-21 composire wings[R]. Paris: JEC composite, 2012.
    [8] WEI K, LIANG D, MEI M, et al. Preforming behaviors of carbon fiber fabrics with different contents of binder and under various process parameters[J]. Composites Part B: Engineering,2019,166:221-232. doi: 10.1016/j.compositesb.2018.11.143
    [9] LIU Y N, YUAN C, LIU C, et al. Study on the resin infusion process based on automated fiber placement fabricated dry fiber preform[J]. Scientific Reports,2019,9(1):7440. doi: 10.1038/s41598-019-43982-1
    [10] VELDENZ L, DI M, ASTWOOD S, et al. Characteristics and processability of bindered dry fiber material for automated fiber placement[J]. ECCM17-17 th European Conference on Composite Materials, Munich, Germany,2016.
    [11] CROSSLEY R J, SCHUBEL P J, WARRIOR N A. The experimental determination of prepreg tack and dynamic stiffness[J]. Composites Part A: Applied Science and Manufacturing,2012,43(3):423-434. doi: 10.1016/j.compositesa.2011.10.014
    [12] DI FRANCESCO M, VELDENZ L, DELLANNO G, et al. Heater power control for multi-material, variable speed automated fibre placement[J]. Composites Part A: Applied Science and Manufacturing,2017,101:408-421. doi: 10.1016/j.compositesa.2017.06.015
    [13] CROFT K, LESSARD L, PASINI D, et al. Experimental study of the effect of automated fiber placement induced defects on performance of composite laminates[J]. Composites Part A: Applied Science and Manufacturing,2011,42(5):484-491. doi: 10.1016/j.compositesa.2011.01.007
    [14] VELDENZ L, DI FRANCESCO M, GIDDINGS P, et al. Material selection for automated dry fiber placement using the analytical hierarchy process[J]. Advanced Manufacturing: Polymer & Composites Science,2018,4(4):83-96.
    [15] BELHAJ M, DELEGLISE M, COMAS-CARDONA S, et al. Dry fiber automated placement of carbon fibrous preforms[J]. Composites Part B: Engineering,2013,50:107-111. doi: 10.1016/j.compositesb.2013.01.014
    [16] ROHATGI V, LEE L J. Moldability of tackified fiber preforms in liquid composite molding[J]. Journal of Composite Materials,1997,31(7):720-744. doi: 10.1177/002199839703100705
    [17] RAO S, UMER R, THOMAS J. Investigation of peel resistance during the fibre placement process[J]. Journal of Reinforced Plastics and Composites,2015,35(4):275-286.
    [18] 钟翔屿, 张代军, 包建文, 等. 增韧剂含量对国产高强中模炭纤维环氧复合材料耐冲击性的影响[J]. 固体火箭技术, 2017, 40(3):372-379.

    ZHONG Xiangyu, ZHANG Daijun, BAO Jianwen, et al. Effect of toughening thermoplastic particles content on impact resistance of epoxy matrix composite reinforced by domestic intermediate modulus carbon fiber[J]. Journal of Solid Rocket Technology,2017,40(3):372-379(in Chinese).
    [19] NASH N H, YOUNG T M, MCGRAIL P T, et al. Inclusion of a thermoplastic phase to improve impact and post-impact performances of carbon fibre reinforced thermosetting composites — A review[J]. Materials & Design,2015,85:582-597.
    [20] WONG D W Y, LIN L, MCGRAIL P T, et al. Improved fracture toughness of carbon fibre/epoxy composite laminates using dissolvable thermoplastic fibres[J]. Composites Part A: Applied Science and Manufacturing,2010,6:759-767.
    [21] SAZ-OROZCO B D, RAY D, KERVENNIC A, et al. Toughening of carbon fibre/polybenzoxazine composites by incorporating polyethersulfone into the interlaminar region[J]. Materials & Design,2016,93:297-303.
    [22] 闫丽, 安学峰, 董慧民. RTM用ES-Fabric 增强织物的制备及其复合材料性能研究[J]. 化工新型材料, 2016, 44(4):94-96.

    YAN Li, AN Xuefeng, DONG Huimin, et al. Preparation of ES-fabric reinforced fabric for RTM process and study on the property of the composite[J]. New Chemical Materials,2016,44(4):94-96(in Chinese).
    [23] ZHAO X, CHEN W, HAN X, et al. Enhancement of interlaminar fracture toughness in textile-reinforced epoxy composites with polyamide 6/graphene oxide interlaminar toughening tackifier[J]. Composites Science and Technology,2020,191:108094. doi: 10.1016/j.compscitech.2020.108094
    [24] QUAN D, BOLOGNA F, SCARSELLI G, et al. Mode-II fracture behaviour of aerospace-grade carbon fibre/epoxy composites interleaved with thermoplastic veils[J]. Composites Science and Technology,2020,191:108065. doi: 10.1016/j.compscitech.2020.108065
    [25] 国家技术监督局. 胶粘剂T剥离强度试验方法-挠性材料对挠性材料: GB/T 2791—1995[S]. 北京: 中国标准出版社, 1995.

    The State Bureau of Quality and Technical Supervision. Adhesives, T peel strength test method for a flexible-to-flexible test specimen assembly: GB/T 2791—1995[S]. Beijing: China Standard Press, 1995(in Chinses).
    [26] NGUYEN N Q, MEHDIKHANI M, STRAUMIT I, et al. Micro-CT measurement of fibre misalignment: Application to carbon/epoxy laminates manufactured in autoclave and by vacuum assisted resin transfer moulding[J]. Composites Part A: Applied Science and Manufacturing,2018,104:14-23. doi: 10.1016/j.compositesa.2017.10.018
  • 加载中
图(28) / 表(5)
计量
  • 文章访问数:  847
  • HTML全文浏览量:  278
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-12
  • 修回日期:  2022-07-23
  • 录用日期:  2022-08-16
  • 网络出版日期:  2022-08-25
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回