留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯/碳纳米管共改性碳纤维复合材料的结构、力学、导电和雷击性能

郭妙才 黑艳伟 李斌太 邢丽英

郭妙才, 黑艳伟, 李斌太, 等. 石墨烯/碳纳米管共改性碳纤维复合材料的结构、力学、导电和雷击性能[J]. 复合材料学报, 2022, 39(9): 4354-4365. doi: 10.13801/j.cnki.fhclxb.20220803.003
引用本文: 郭妙才, 黑艳伟, 李斌太, 等. 石墨烯/碳纳米管共改性碳纤维复合材料的结构、力学、导电和雷击性能[J]. 复合材料学报, 2022, 39(9): 4354-4365. doi: 10.13801/j.cnki.fhclxb.20220803.003
GUO Miaocai, HEI Yanwei, LI Bintai, et al. Structure, mechanical property, electrical conductivity and lightning strike damage behavior of graphene/carbon nanotube co-modified CFRPs[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4354-4365. doi: 10.13801/j.cnki.fhclxb.20220803.003
Citation: GUO Miaocai, HEI Yanwei, LI Bintai, et al. Structure, mechanical property, electrical conductivity and lightning strike damage behavior of graphene/carbon nanotube co-modified CFRPs[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4354-4365. doi: 10.13801/j.cnki.fhclxb.20220803.003

石墨烯/碳纳米管共改性碳纤维复合材料的结构、力学、导电和雷击性能

doi: 10.13801/j.cnki.fhclxb.20220803.003
基金项目: 中国航空制造技术研究院基金(KS9121FO111);军委科技委基础加强计划技术领域基金(2020-JCJQ-JJ-157)
详细信息
    通讯作者:

    郭妙才,博士,高级工程师,研究方向为复合材料 E-mail:guo_miaocai@sina.cn

  • 中图分类号: TB332

Structure, mechanical property, electrical conductivity and lightning strike damage behavior of graphene/carbon nanotube co-modified CFRPs

  • 摘要: 发展结构-防雷击功能一体化复合材料是未来的发展方向之一。本文制备了一种石墨烯和碳纳米管共改性的复合材料并研究了其结构、力学性能、导电性能和雷击性能。结构研究表明导电纳米粒子主要分布于复合材料层间和邻近层间的层内区域,而内部分布较少。复合材料的0°弯曲强度和0°层间剪切强度分别为(1538±86) MPa和(107.0±1.0) MPa。制备了2 mm、3 mm、4 mm三种厚度的复合材料板,其面内电导率为100 S/cm左右,其厚度向电导率分别为0.128 S/cm、0.094 S/cm和0.088 S/cm。雷击试验表明,三种厚度试样的总损伤面积类似,深层损伤面积随厚度向电导率降低而减少,但损伤深度则随厚度向电导率降低而增加,损伤模式主要为树脂的烧蚀气化和纤维的断裂损伤,但没有明显的层间分层发生。2 mm厚雷击试样板损伤区域的最低弯曲强度达到了782 MPa,保持率为75%,弯曲模量保持率为59.2%。2 mm板和3 mm板雷击损伤中心150 mm×100 mm区域平均弯曲强度保持率分别达到了87.4%和87.2%,损伤深度分别只有约0.3 mm和0.4 mm。

     

  • 图  1  试样的正面和背面图及试验装置示意图

    Figure  1.  Front and back of the sample for lightning-strike test and schematic diagram of the composite sample for lightning strike test

    图  2  树脂流变图 (a) 和树脂断口形貌SEM图像 ((b)、(c))

    Figure  2.  Rheological diagram (a) and SEM images of fracture morphologies of the GC-EP resin ((b), (c))

    图  3  复合材料截面的SEM图像:(a) 整个区域;(b) 离层间10 μm;(c) 离层间40 μm

    Figure  3.  SEM images of cross section of ZT7 H/GC-EP: (a) Whole area; (b) 10 μm away from the interlayer; (c) 40 μm away from the interlayer

    图  4  复合材料层板层间剪切强度(ILSS)破坏样的SEM图像:(a) 截面;(b) 分层面;(c) 分层面高倍图

    Figure  4.  SEM images of the failure composites laminates sample after interlaminar shear strength (ILSS) test: (a) Cross section; (b) Delamination surface; (c) High magnification of the delamination surface

    图  5  雷击试样试验前后的照片和C扫图像:雷击试验前:(a) GC-2 mm;(b) GC-3 mm;(c) GC-4 mm;试验后:((d)、(g)) GC-2 mm;((e)、(h)) GC-3 mm;((f)、(i)) GC-4 mm

    Figure  5.  Optical photos and C-scan images of samples before and after lightning-strike test: Before test: (a) GC-2 mm; (b) GC-3 mm; (c) GC-4 mm; After test: ((d), (g)) GC-2 mm; ((e), (h)) GC-3 mm; ((f), (i)) GC-4 mm

    图  6  雷击试样试验后的照片:(a) GC-2 mm;(b) GC-3 mm;(c) GC-4 mm;(d) 微CT扫描图像

    Figure  6.  Optical photos of samples after lightning-strike test: (a) GC-2 mm; (b) GC-3 mm; (c) GC-4 mm; (d) Micro-CT image

    图  7  复合材料层板试样板纤维损伤区域的SEM图像

    Figure  7.  SEM images of fiber damage area of tested composites laminates sample

    图  8  GC-4mm复合材料层合板试样雷击损伤的剖析:(a) 损伤清理后的试样照片;(b) 损伤位置标记后的试样照片

    Figure  8.  Analysis of lightning strike damage of GC-4mm sample: (a) Photo of the damage cleaned sample; (b) Damage location marking of the sample

    图  9  GC-2 mm层合板试样雷击损伤区域的弯曲试样:(a) 试样照片;(b) 载荷-位移曲线;(c) 弯曲强度及保持率曲线;(d) 弯曲模量及保持率曲线

    Figure  9.  Flexural strength of damaged area of the GC-2 mm composite laminates sample: (a) Photo; (b) Load-displacement curves; (c) Flexural strength and retention rates; (d) Flexural modulus and retention rates of the specimens

    图  10  GC-3 mm雷击损伤区域弯曲试样:(a) 照片;(b)各试样弯曲强度及保持率曲线

    Figure  10.  Damaged area of the GC-3 mm sample: (a) Photos of flexural strength specimens; (b) Flexural strength and retention rates of the specimens

    图  11  用于比较的CCF800/AC631 (a) 和CF3031/EP (b) 的雷击后的试样截面显微照片

    Figure  11.  Optical micrographs of the cross sections of CCF800/AC631 (a) and CF3031/EP (b) after lightning-strike test for comparison

    表  1  复合材料的铺层结构及测试的性能

    Table  1.   Stacking sequences and tests of the composite laminates

    LaminateThickness/mmStacking sequenceTest
    GC-Unidirectional (UD)2[0]16Interlaminar shear strength (ILSS),
    0º flexural strength (FS)
    GC-2 mm2[0,45,−45,90]2 sElectrical conductivity, lightning-strike test, flexural strength after lightning-strike
    GC-3 mm3[0,45,−45,90]3 sElectrical conductivity, lightning-strike test, flexural strength after lightning-strike
    GC-4 mm4[0,45,−45,90]4 sElectrical conductivity, lightning-strike test
    下载: 导出CSV

    表  2  复合材料层板力学性能、面内电导率(σxy)和厚度向电导率(σz)

    Table  2.   Mechanical properties, in-plane electrical conductivity (σxy) and conductivity through thickness direction (σz) of the composites laminates

    PropertyResin
    0º FS/MPa1538±86
    0º ILSS/MPa107.0±1.0
    GC-2 mm σxy/(S·cm−1)100.1±12.4
    GC-2 mm σz/(S·cm−1)0.128±0.025
    GC-3 mm σxy/(S·cm−1))105.1±9.5
    GC-3 mm σz/(S·cm−1)0.094±0.009
    GC-4 mm σz/(S·cm−1)0.088±0.008
    下载: 导出CSV

    表  3  不同复合材料的ILSS的比较

    Table  3.   Comparison of ILSS of different composites

    LaminateReinforcementResinILSS/MPaNote
    GC-UDUnidirectional (UD) ZT7 HGC-EP107±1.0This work
    ZT7 E/9368ZT7 H UD fabricEpoxy resin 936885Reference [37]
    ZT7 E3205P/6808ZT7 H plain fabricEpoxy resin 680855Reference [37]
    T700/5229DT700CNT modified epoxy resin 5229D87.1Reference [40]
    CNT modified compositeCVD-growth CNT modified CF (UD)Epoxy resin47.59Reference [36]
    103% improvement compared
    to the control
    GO modified compositeGO modified CF (UD)Epoxy resin90.62Reference [38]
    48.1% improvement compared
    to the control
    GO-CNT co-modified compositeCNT-GO co-modified CF (UD)Epoxy resin78.49Reference [38]
    28.3% improvement compared
    to the control
    T800/5228T800 (UD)5228 aero-grade epoxy resin105±3.3Reference [39]
    CCF800/AC631CCF800 (UD)AC631 aero-grade bismaleimide resin123±3.5Data tested in our laboratory
    下载: 导出CSV

    表  4  不同复合材料的σz的比较

    Table  4.   Comparison of σz of different composites

    LaminateReinforcementResinσz/(S·cm-1)Note
    GC-2 mm
    GC-3 mm
    GC-4 mm
    ZT7 HGC-EP0.088-0.128This work
    ZT7 H/5229DZT7 HCNT modified epoxy resin
    5229D
    0.004387Reference [42]
    orthotropic laminate
    ZT7 H/5229DZT7 HCNT modified epoxy resin
    5229D
    7.94×10−6Reference [42]
    quasi-isotropic laminate
    CCF800/AC631CCF800 (UD)AC631 aero-grade bismaleimide resin0.00172Data tested in our laboratory
    T800/5228T800 (UD)None toughened epoxy resin0.122Reference [41]
    CF3031/EPCF3031 twill fabricNone toughened epoxy resin0.138-0.374Data tested in our laboratory
    Interleaved T700S/EPT700SEP0.20Interleaved 1.09wt% CNT
    films [43]
    Interleaved T300/EPT300-3k plain woven fabric#2500 epoxy0.52Interleaved with 150 μm thick bucky papers [26]
    下载: 导出CSV

    表  5  各体系雷击损伤区域最小弯曲强度比较

    Table  5.   Comparison of the minimum flexural strength at damaged area of different composites

    Laminateσz/(S·cm−1)Minimum flexural strength at damaged area/MPaRetention rate/%
    GC-2 mm0.12878275.0
    CF3031/EP0.37445863.5
    CCF800/AC6310.0017621424.7
    下载: 导出CSV
  • [1] ALAM P, MAMALIS D, ROBERT C, et al. The fatigue of carbon fibre reinforced plastics—A review[J]. Composites Part B: Engineering,2019,166:555-579. doi: 10.1016/j.compositesb.2019.02.016
    [2] HASHISH M, KENT W A. Trimming of CFRP aircraft components[C]//WJTA-IMCA Conference and Expo. Houston, 2013.
    [3] KUMAR V, YOKOZEKI T, KARCH C, et al. Factors affecting direct lightning strike damage to fiber reinforced compo-sites: A review[J]. Composites Part B: Engineering,2020,183:107688. doi: 10.1016/j.compositesb.2019.107688
    [4] DAS S, YOKOZEKI T. A brief review of modified conductive carbon/glass fibre reinforced composites for structural applications: Lightning strike protection, electromagnetic shielding, and strain sensing[J]. Composites Part C: Open Access,2021,5:100162. doi: 10.1016/j.jcomc.2021.100162
    [5] WANG B, ZHU Y, MING Y, et al. Understanding lightning strike induced damage mechanism of carbon fiber reinforced polymer composites: An experimental study[J]. Materials& Design,2020,192:108724.
    [6] KATUNIN A. Lightning strike protection of aircraft compo-site structures: Analysis and comparative study[J]. Fatigue of Aircraft Structures,2016(8):49-54.
    [7] KATUNIN A, KRUKIEWICZ K, HEREGA A, et al. Concept of a conducting composite material for lightning strike protection[C]//6th International Advances in Applied Physics and Materials Science Congress Exhibition. Istanbul, 2016.
    [8] WANG F S, ZHANG Y, MA X T, et al. Lightning ablation suppression of aircraft carbon/epoxy composite laminates by metal mesh[J]. Journal of Materials Science & Technology,2019,35(11):2693-2704.
    [9] GAGNE M, THERRIAULT D. Lightning strike protection of composites[J]. Progress in Aerospace Sciences,2014,64:1-16. doi: 10.1016/j.paerosci.2013.07.002
    [10] ZHU H, FU K, YANG B, et al. Nickel-coated nylon sandwich film for combination of lightning strike protection and electromagnetic interference shielding of CFRP composite[J]. Composites Science and Technology,2021,207:108675. doi: 10.1016/j.compscitech.2021.108675
    [11] GOU J, TANG Y, LIANG F, et al. Carbon nanofiber paper for lightning strike protection of composite materials[J]. Composites Part B: Engineering,2009,41:192-198.
    [12] CHAKRAVARTHI D K, KHABASHESKU V N, VAIDYANATHAN R, et al. Carbon fiber-bismaleimide composites filled with nickel-coated single-walled carbon nanotubes for lightning-strike protection[J]. Advanced Functional Materials,2011,21(13):2527-2533. doi: 10.1002/adfm.201002442
    [13] GARG A, CHALAK H D, BELARBI M O, et al. Estimation of carbon nanotubes and their applications as reinforcing composite materials—An engineering review[J]. Composite Structures,2021,272:114234. doi: 10.1016/j.compstruct.2021.114234
    [14] YOUSEFI N, FISHER S J, BURGSTALLER C, et al. Hierarchical carbon fibre composites incorporating high loadings of carbon nanotubes[J]. Composites Science and Technology,2022,222:109369. doi: 10.1016/j.compscitech.2022.109369
    [15] ZHANG H, LIU Y, KUWATA M, et al. Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg[J]. Compo-sites Part A: Applied Science and Manufacturing,2015,70:102-110. doi: 10.1016/j.compositesa.2014.11.029
    [16] QU S, DAI Y, ZHANG D, et al. Carbon nanotube film based multifunctional composite materials: An overview[J]. Functional Composites and Structures,2020,2(2):022002. doi: 10.1088/2631-6331/ab9752
    [17] JIANG M, CONG X, YI X, et al. A stochastic overlap network model of electrical properties for conductive weft yarn composites and their experimental study[J]. Compo-sites Science and Technology,2022,217:109075. doi: 10.1016/j.compscitech.2021.109075
    [18] HU D, LIU X, LIU W, et al. The effects of compaction and interleaving on through-thickness electrical resistance and in-plane mechanical properties for CFRP laminates[J]. Composites Science and Technology,2022,223:109441. doi: 10.1016/j.compscitech.2022.109441
    [19] GUO M. The electrical conductivity and interlaminar fracture toughness of composite laminate interleaved with silver-plated nylon mesh[J]. Journal of Reinforced Plastics and Composites, 2022: 07316844221099927. [2022-08-15]. DOI: https://doi.org/10.1177/07316844221099927.
    [20] DE VOLDERR M F L, TAWFICK S H, BAUGHMAN R H, et al. Carbon nanotubes: Present and future commercial applications[J]. Science,2013,339(6119):535-539. doi: 10.1126/science.1222453
    [21] LIN W, WANG Y, YOUSEFPOUR K, et al. Evaluating the lightning strike damage tolerance for CFRP composite laminates containing conductive nanofillers[J]. Applied Composite Materials,2022,29(4):1537-1554.
    [22] LAMPKIN S, LIN W, ROSTAGHI-CHALAKI M, et al. Epoxy resin with carbon nanotube additives for lightning strike damage mitigation of carbon fiber composite laminates[C]//American Society for Composites (ASC) 34th Technical Conference. Atlanta, 2019.
    [23] SOYKASAP O, KARAKAYA S, COLAKOGLU M. Simulation of lightning strike damage in carbon nanotube doped CFRP composites[J]. Journal of Reinforced Plastics and Composites,2016,35(6):504-515. doi: 10.1177/0731684415618458
    [24] KATUNIN A, KRUKIEWICZ K, TURCZYN R, et al. Lightning strike resistance of an electrically conductive CFRP with a CSA-doped PANI/epoxy matrix[J]. Composite Structures,2017,181:203-213. doi: 10.1016/j.compstruct.2017.08.091
    [25] ZHOU Y, RAGHU S N V, KUMAR V, et al. Simulated lightning strike investigation of CFRP comprising a novel polyaniline/phenol based electrically conductive resin matrix[J]. Composites Science and Technology,2021,214:108971. doi: 10.1016/j.compscitech.2021.108971
    [26] KUMAR V, SHARMA S, PATHAK A, et al. Interleaved MWCNT buckypaper between CFRP laminates to improve through-thickness electrical conductivity and reducing lightning strike damage[J]. Composite Structures,2019,210:581-589. doi: 10.1016/j.compstruct.2018.11.088
    [27] OU Y, GONZALEZ C, VILATELA J J. Understanding interlaminar toughening of unidirectional CFRP laminates with carbon nanotube veils[J]. Composites Part B: Engineering,2020,201:108372. doi: 10.1016/j.compositesb.2020.108372
    [28] LIANG X, CHENG Q. Synergistic reinforcing effect from graphene and carbon nanotubes[J]. Composites Communications,2018,10:122-128. doi: 10.1016/j.coco.2018.09.002
    [29] SHIN M K, LEE B, KIM S H, et al. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes[J]. Nature Communications,2012,3(1):1-8.
    [30] PENG H J, HUANG J Q, ZHAO M Q, et al. Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries[J]. Advanced Functional Materials,2014,24(19):2772-2781. doi: 10.1002/adfm.201303296
    [31] 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for flexural properties of fiber reinforced plastics: GB/T 1449—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [32] ASTM. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM D790−00[S]. West Conshohocken: ASTM, 2002.
    [33] ASTM. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: ASTM D2344—2016[S]. West Conshohocken: ASTM, 2016.
    [34] Society of Automotive Engineers. Aircraft lightning test method: SAE ARP5416A[S]. New York: Society of Automotive Engineers, 2005
    [35] 孙晋茹, 姚学玲, 李亚丰, 等. 碳纤维增强树脂复合材料在多重连续雷电流冲击下的损伤特性[J]. 复合材料学报, 2019, 36(12):2764-2771. doi: 10.13801/j.cnki.fhclxb.20190104.001

    SUN Jinru, YAO Xueling, LI Yafeng, et al. Damage properties of carbon fiber reinforced epoxy composite subjected to multiple continuous lightning current strikes[J]. Acta Materiae Compositae Sinica,2019,36(12):2764-2771(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190104.001
    [36] WANG Y, RAMAN PILLAI S K, CHE J, et al. High interlaminar shear strength enhancement of carbon fiber/epoxy composite through fiber-and matrix-anchored carbon nano-tube networks[J]. ACS Applied Materials & Interfaces,2017,9(10):8960-8966.
    [37] 肖何, 陈藩, 刘寒松, 等. 国产ZT7 H碳纤维表面状态及其复合材料界面性能[J]. 复合材料学报, 2021, 38(8):2554-2567.

    XIAO He, CHEN Fan, LIU Hansong, et al. Surface state of domestic ZT7 H carbon fiber and interface property of composites[J]. Acta Materiae Compositae Sinica,2021,38(8):2554-2567(in Chinese).
    [38] GAO B, ZHANG R, HE M, et al. Effect of a multiscale reinforcement by carbon fiber surface treatment with graphene oxide/carbon nanotubes on the mechanical properties of reinforced carbon/carbon composites[J]. Composites Part A: Applied Science and Manufacturing,2016,90:433-440. doi: 10.1016/j.compositesa.2016.08.012
    [39] 包建文, 唐邦铭, 沈宝华. 5228/T800复合材料力学性能研究[J]. 纤维复合材料, 1997(4):28-31.

    BAO Jianwen, TANG Bangming, SHEN Baohua. Study on mechanical properties of 5228/T800 composites[J]. Fiber Composites,1997(4):28-31(in Chinese).
    [40] 张静静, 孙 明, 汪 洋, 等. 5229D/T700 导电环氧复合材料空间环境适应性研究[J]. 宇航材料工艺, 2018(5):49-67. doi: 10.12044/j.issn.1007-2330.2018.05.010

    ZHANG Jingjing, SUN ming, WANG Yang, et al. Space environmental suitability of 5229D/T700 conductive epoxy composites[J]. Aerospace Materials & Technology,2018(5):49-67(in Chinese). doi: 10.12044/j.issn.1007-2330.2018.05.010
    [41] GUO M, YI X. The production of tough, electrically conductive carbon fiber composite laminates for use in airframes[J]. Carbon,2013,58:241-244. doi: 10.1016/j.carbon.2013.02.052
    [42] FU S, GUO Y, SHI L, et al. Investigation on temperature behavior of CFRP during lightning strike using experiment and simulation[J]. Polymer Composites,2019,40(9):3541-3549. doi: 10.1002/pc.25216
    [43] XU H, TONG X, ZHANG Y, et al. Mechanical and electrical properties of laminated composites containing continuous carbon nanotube film interleaves[J]. Composites Science and Technology,2016,127:113-118. doi: 10.1016/j.compscitech.2016.02.032
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  1148
  • HTML全文浏览量:  282
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-08
  • 修回日期:  2022-07-14
  • 录用日期:  2022-07-23
  • 网络出版日期:  2022-08-03
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回