留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超构材料波动功能调控研究进展

李岩 金亚斌

李岩, 金亚斌. 超构材料波动功能调控研究进展[J]. 复合材料学报, 2022, 39(9): 4259-4273. doi: 10.13801/j.cnki.fhclxb.20220712.001
引用本文: 李岩, 金亚斌. 超构材料波动功能调控研究进展[J]. 复合材料学报, 2022, 39(9): 4259-4273. doi: 10.13801/j.cnki.fhclxb.20220712.001
LI Yan, JIN Yabin. Research progress on metamaterials for wave function regulation[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4259-4273. doi: 10.13801/j.cnki.fhclxb.20220712.001
Citation: LI Yan, JIN Yabin. Research progress on metamaterials for wave function regulation[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4259-4273. doi: 10.13801/j.cnki.fhclxb.20220712.001

超构材料波动功能调控研究进展

doi: 10.13801/j.cnki.fhclxb.20220712.001
基金项目: 国家自然科学基金(11902223);国家杰出青年科学基金(11625210);国家重点研发计划(2020 YFB0311500)
详细信息
    通讯作者:

    李岩,博士,教授,博士生导师,研究方向为高性能复合材料的制备及力学  E-mail: liyan@tongji.edu.cn

    金亚斌,博士,研究员,博士生导师,研究方向为多功能一体化超结构  E-mail: 083623jinyabin@tongji.edu.cn

  • 中图分类号: TB43;X125;X126

Research progress on metamaterials for wave function regulation

  • 摘要: 超构材料是人工构造的复合结构材料,通过设计基元的结构参数,可以实现丰富的波动调控功能,并可突破传统材料的波动响应极限,在航空航天、轨道交通等民用和国防各领域都具有极大的应用潜力。首先简要介绍了超构材料的基本概念、性质和发展历史,然后从超构材料的禁带减振及其智能设计、低频宽带降噪和能量采集三个方面详细介绍超构材料的基本功能,再从实际应用的多需求出发介绍了轻质-承载-减振降噪和能量采集-减振降噪等类型的多功能一体化超构材料设计原理和性能。最后,总结上述研究进展,并展望超构材料与复合材料、人工智能和非厄米时变系统等的交叉研究,进一步提升超构材料性能和应用能力。

     

  • 图  1  (a) 马德里市中心的声子晶体雕塑[22];(b) 同济大学校园内的声子晶体雕塑

    Figure  1.  (a) Phononic crystals sculpture in Madrid city center[22]; (b) Phononic crystals sculpture in Tongji University campus

    图  2  ((a)、(c)) 超构材料梁的单胞示意图及纵波能带结构[32];((b)、(d)) 超构材料板的单胞示意图及弯曲波能带结构[33]

    Figure  2.  ((a),(c)) Schematic diagrams for unit cell of metamaterial beam and the corresponding band structure of longitudinal wave[32]; ((b),(d)) Schematic diagrams for unit cell of metamaterial plate and the corresponding band structure of flexural wave[33]

    k—Wave number; a—Lattice constant; R—Arrangement radius of resonators; M, Γ and K—High symmetry points of the first irreducible Brillouin zone

    图  3  (a) 设计超构材料梁的强化学习框架;(b) 重复测试下最后一个训练片段的参数演化路径;(c) 不同初始状态下最后一个训练片段的参数演化路径[32]

    Figure  3.  (a) Reinforcement learning framework for designing metamaterial beam; (b) Parameter-evolution path of the last episode in the four tests; (c) Parameter-evolution path of the last episode at different initial states[32]

    图  4  (a) 设计超构材料板的神经网络中数据流循环示意图;(b) 正向神经网络预测带隙与真实带隙对比;(c) 应用逆向神经网络设计的超构材料板对应的能带结构[33]

    Figure  4.  (a) Schematic diagram of data flow cycle in neural network for designing metamaterial plate; (b) Comparison between predicted and real bandgap width of forward neural network; (c) Band structure corresponding to the metamaterial plate designed by inverse neural network[33]

    图  5  (a) 不同纤维增强的声学测试样件;(b) 天然纤维和合成纤维的吸声系数对比;(c) 不同放大倍率下剑麻纤维的多尺度空腔结构[38]

    Figure  5.  (a) Acoustic test samples reinforced with different fibers; (b) Comparison of acoustic absorption coefficients of natural and synthetic fibers; (c) Multi-scale cavity structure of sisal fibers at different magnification rates[38]

    图  6  (a) 由16个Fabry-Perot共振通道组成的超构材料单元示意图;(b) 该超构材料吸声谱和有反射硬壁的1 cm海棉的吸声谱;(c) 超构材料覆盖1 cm吸声海棉后的吸声谱[51];(d) 包含36个级联内插管亥姆霍兹共振体的非局域超构材料示意图;(e) 对应的3 D打印样品图;(f) 该非局域超材料的理论和实验吸声谱[54]

    Figure  6.  (a) Schematics of the metamaterial unit consisting of 16 Fabry-Perot resonant channels; (b) Absorption spectrum of the acoustic metamaterial sample and that for a 1 cm sponge backed by a reflecting hard wall; (c) Acoustic metamaterial measurement of absorption coefficient of sample covered with 1 cm sound absorbing sponge[51]; (d) Schematic of the non-local metamaterial of 36 cascade neck-embedded Helmholtz resonators; (e) 3D-printed sample; (f) Theoretical and measured absorption spectra of the non-local metamaterial absorber[54]

    Pi and Pr—Incident acoustic pressure and reflected acoustic pressure, respectively

    图  7  周期性超构材料中缺陷诱导产生的单点局域态[61](a) 和双点局域态[62](b);(c) 梯度超构材料中缺陷诱导的局域态[63];麦克斯韦-鱼眼透镜型[68](d) 和龙勃透镜型[69](e) 梯度折射率超构材料点聚焦效应;超构表面聚焦效应 (f) 及其焦斑处压电能量采集输出功率与焦斑半峰全宽关系 (g)[60, 70-71]

    Figure  7.  Defect induced single point localized states[61](a) and two-point localized states[62](b) in periodic metamaterials; (c) Defect induced localized states in graded metamaterials[63]; Point focusing effect of Maxwell fisheye lens[68](d) and Luneburg lens[69](e) graded index metamaterials; Focusing effect of metasurface (f) and relationship between piezoelectric energy harvesting output power at focal spot and full width at half peak[60, 70-71]

    λ—Working wavelength

    图  8  (a) 拓扑彩虹能量捕获器[75];(b) Kekulé相位调制能量采集器[76-77];(c) 手性系统与C6v系统能量采集功率与频率扰动关系图[78];(d) 手性系统结构示意图及位移场图[78]

    Figure  8.  (a) Topological rainbow energy harvester[75]; (b) Kekulé phase modulation energy harvester[76-77]; (c) Relationship between output power and frequency disturbance in chiral and C6v systems[78]; (d) Displacement field of chirality protected edge states[78]

    CW—Clockwise; CCW—Counter clockwise

    图  9  机器学习逆向设计具有低频宽带减振性能的螺旋板夹芯超结构[79]

    Figure  9.  Inverse design of spiral plate sandwich metastructure with low-frequency and wide-band vibration isolation performance via machine learning[79]

    FEM—Finite element method

    图  10  (a) 多功能超结构示意图及基元的空间布置[80];(b) 优化后的超结构与优化基元的吸声曲线[80];(c) 面心立方芯复合材料夹层板实验样品[84-85];(d) 通过数值模拟和实验测量得到的传声损失曲线[85]

    Figure  10.  (a) Schematic diagram of the proposed multifunctional metastructure and the spatial arrangement of units[80]; (b) Sound absorption curves of the optimized metastructure and the optimized units[80]; (c) Specimen of composite sandwich panel with face-centered cubic core[84-85]; (d) Sound transmission loss obtained by numerical model and experimental measurement[85]

    CRIET—Cavity resonators with internally extended tubes

    图  11  (a) 振动控制-能量采集多功能超构材料[86];(b) 吸声-能量采集多功能超构材料[87]

    Figure  11.  (a) Multi-functional metamaterials for energy harvesting and vibration control[86]; (b) Energy harvesting and sound absorption[87]

    PTFE—Abbreviation of polytetrafluoroethylene; t0—Thickness of unit cell; d—Gap between the central mass and the rigid dam-board in the bottom; E(z)—Lectric field

  • [1] MA G, SHENG P. Acoustic metamaterials: From local resonances to broad horizons[J]. Science Advances,2016,2(2):e1501595. doi: 10.1126/sciadv.1501595
    [2] GE H, YANG M, MA C, et al. Breaking the barriers: Advances in acoustic functional materials[J]. National Science Review,2018,5(2):159-182. doi: 10.1093/nsr/nwx154
    [3] WANG Y S, CHEN W, WU B, et al. Tunable and active phononic crystals and metamaterials[J]. Applied Mechanics Reviews,2020,72(4):040801. doi: 10.1115/1.4046222
    [4] CUMMER S A, CHRISTENSEN J, ALÙ A. Controlling sound with acoustic metamaterials[J]. Nature Reviews Materials,2016,1(3):1-13.
    [5] CHEN Y, LI T, SCARPA F, et al. Lattice metamaterials with mechanically tunable Poisson’s ratio for vibration control[J]. Physical Review Applied,2017,7(2):024012. doi: 10.1103/PhysRevApplied.7.024012
    [6] BERTOLDI K, VITELLI V, CHRISTENSEN J, et al. Flexible mechanical metamaterials[J]. Nature Reviews Materials,2017,2(11):17066. doi: 10.1038/natrevmats.2017.66
    [7] AL-LETHAWE M A, ADDOUCHE M, KHELIF A, et al. All-angle negative refraction for surface acoustic waves in pillar-based two-dimensional phononic structures[J]. New Journal of Physics,2012,14(12):123030. doi: 10.1088/1367-2630/14/12/123030
    [8] XIE Y, WANG W, CHEN H, et al. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface[J]. Nature Communications,2014,5:5553. doi: 10.1038/ncomms6553
    [9] FAURE C, RICHOUX O, FÉLIX S, et al. Experiments on metasurface carpet cloaking for audible acoustics[J]. Applied Physics Letters,2016,108(6):064103. doi: 10.1063/1.4941810
    [10] JIN Y, FANG X, LI Y, et al. Engineered diffraction gratings for acoustic cloaking[J]. Physical Review Applied,2019,11(1):011004. doi: 10.1103/PhysRevApplied.11.011004
    [11] WANG Z, LI C, ZATIANINA R, et al. Carpet cloak for water waves[J]. Physical Review E,2017,96(5):053107.
    [12] NING L, WANG Y Z, WANG Y S. Broadband square cloak in elastic wave metamaterial plate with active control[J]. Journal of the Acoustical Society of America,2021,150(6):4343-4352. doi: 10.1121/10.0008974
    [13] ZHANG H K, CHEN Y, LIU X N, et al. An asymmetric elastic metamaterial model for elastic wave cloaking[J]. Journal of the Mechanics and Physics of Solids,2020,135:103796. doi: 10.1016/j.jmps.2019.103796
    [14] LI X, YU X, CHUA J W, et al. Microlattice metamaterials with simultaneous superior acoustic and mechanical energy absorption[J]. Small,2021,17(24):2100336. doi: 10.1002/smll.202100336
    [15] KUSHWAHA M S, HALEVI P, DOBRZYNSKI L, et al. Acoustic band structure of periodic elastic composites[J]. Physical Review Letters,1993,71(13):2022-2025. doi: 10.1103/PhysRevLett.71.2022
    [16] PENNEC Y, VASSEUR J O, DJAFARI-ROUHANI B, et al. Two-dimensional phononic crystals: Examples and applications[J]. Surface Science Reports,2010,65(8):229-291. doi: 10.1016/j.surfrep.2010.08.002
    [17] LIU Z, ZHANG X, MAO Y, et al. Locally resonant sonic materials[J]. Science,2000,289(5485):1734-1736. doi: 10.1126/science.289.5485.1734
    [18] LI Y, LIANG B, GU Z M, et al. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces[J]. Scientific Reports,2013,3:2546. doi: 10.1038/srep02546
    [19] YU N, CAPASSO F. Flat optics with designer metasurfaces[J]. Nature Materials,2014,13(2):139-150. doi: 10.1038/nmat3839
    [20] ASSOUAR B, LIANG B, WU Y, et al. Acoustic metasurfaces[J]. Nature Reviews Materials,2018,3(12):460-472. doi: 10.1038/s41578-018-0061-4
    [21] JIN Y, PENNEC Y, BONELLO B, et al. Physics of surface vibrational resonances: Pillared phononic crystals, metamaterials, and metasurfaces[J]. Reports on Progress in Physics,2021,84:086502. doi: 10.1088/1361-6633/abdab8
    [22] MARTíNEZ-SALA R, SANCHO J, SÁNCHEZ J V, et al. Sound attenuation by sculpture[J]. Nature,1995,378:241.
    [23] PENNEC Y, DJAFARI-ROUHANI B, LARABI H, et al. Low-frequency gaps in a phononic crystal constituted of cylindrical dots deposited on a thin homogeneous plate[J]. Physical Review B,2008,78(10):104105. doi: 10.1103/PhysRevB.78.104105
    [24] JIN Y, FERNEZ N, PENNEC Y, et al. Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars[J]. Physical Review B,2016,93(5):054109. doi: 10.1103/PhysRevB.93.054109
    [25] 王凯, 周加喜, 蔡昌琦, 等. 低频弹性波超材料的若干进展[J]. 力学学报, 2022, 54(9): 1-17.

    WANG Kai, ZHOU Jiaxi, CAI Changqi, et al. Review of low-frequency elastic wave metamaterials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 1-17(in Chinese).
    [26] DEYMIER P A. Acoustic metamaterials and phononic crystals[M]. Berlin: Springer Science & Business Media, 2013.
    [27] DING H, FANG X, JIA B, et al. Deep learning enables accurate sound redistribution via nonlocal metasurfaces[J]. Physical Review Applied,2021,16(6):064035. doi: 10.1103/PhysRevApplied.16.064035
    [28] AHMED W W, FARHAT M, ZHANG X, et al. Deterministic and probabilistic deep learning models for inverse design of broadband acoustic cloak[J]. Physical Review Research,2021,3(1):013142. doi: 10.1103/PhysRevResearch.3.013142
    [29] LIU F, JIANG X, WANG X, et al. Machine learning-based design and optimization of curved beams for multistable structures and metamaterials[J]. Extreme Mechanics Letters,2020,41:101002. doi: 10.1016/j.eml.2020.101002
    [30] MA W, CHENG F, LIU Y. Deep-learning-enabled on-demand design of chiral metamaterials[J]. ACS Nano,2018,12(6):6326-6334. doi: 10.1021/acsnano.8b03569
    [31] LUO C, NING S, LIU Z, et al. Interactive inverse design of layered phononic crystals based on reinforcement learning[J]. Extreme Mechanics Letters,2020,36:100651. doi: 10.1016/j.eml.2020.100651
    [32] HE L, GUO H, JIN Y, et al. Machine-learning-driven on-demand design of phononic beams[J]. Science China Physics, Mechanics & Astronomy,2022,65(1):214612.
    [33] HE L, WEN Z, JIN Y, et al. Inverse design of topological metaplates for flexural waves with machine learning[J]. Materials & Design,2021,199:109390.
    [34] 金亚斌, 温治辉. 二维共振结构板波动调控研究进展[J]. 力学季刊, 2022, 43(1):1-13. doi: 10.15959/j.cnki.0254-0053.2022.01.001

    JIN Yabin, WEN Zhihui. Research progress in wave modulation of two-dimensional resonant structured plates[J]. Chinese Quarterly of Mechanics,2022,43(1):1-13(in Chinese). doi: 10.15959/j.cnki.0254-0053.2022.01.001
    [35] CHAUNSALI R, CHEN C W, YANG J. Subwavelength and directional control of flexural waves in zone-folding induced topological plates[J]. Physical Review B,2018,97(5):054307. doi: 10.1103/PhysRevB.97.054307
    [36] CAO L, FU Q, SI Y, et al. Porous materials for sound absorption[J]. Composites Communications,2018,10:25-35. doi: 10.1016/j.coco.2018.05.001
    [37] ARENAS J P, CROCKER M J. Recent trends in porous sound-absorbing materials[J]. Sound & Vibration,2010,44(7):12-17.
    [38] YANG W, LI Y. Sound absorption performance of natural fibers and their composites[J]. Science China Technological Sciences,2012,55(8):2278-2283. doi: 10.1007/s11431-012-4943-1
    [39] ERSOY S, KÜÇÜK H. Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties[J]. Applied Acoustics,2009,70(1):215-220. doi: 10.1016/j.apacoust.2007.12.005
    [40] HOSSEINI FOULADI M, AYUB M, JAILANI MOHD NOR M. Analysis of coir fiber acoustical characteristics[J]. Applied Acoustics,2011,72(1):35-42. doi: 10.1016/j.apacoust.2010.09.007
    [41] 马大猷. 微穿孔板吸声结构的理论和设计[J]. 中国科学, 1975, 5(1):38-50.

    MA Dayou. Theory and design of sound absorption structure of micro perforated plate[J]. Science China,1975,5(1):38-50(in Chinese).
    [42] 马大猷. 微穿孔板吸声体的准确理论和设计[J]. 声学学报, 1997, 22(5):385-394.

    MAA Dayou. General theory and design of microperforated-panel absorbers[J]. Acta Acustica,1997,22(5):385-394(in Chinese).
    [43] 刘克, NOCKE C, 马大猷. 扩散场内微穿孔板吸声特性的实验研究[J]. 声学学报, 2000, 25(3):211-218. doi: 10.3321/j.issn:0371-0025.2000.03.003

    LIU Ke, NOCKE C, MA Dayou. Experimental investigation on sound absorption characteristics of microperforated panel in diffuse field[J]. Acta Acustica,2000,25(3):211-218(in Chinese). doi: 10.3321/j.issn:0371-0025.2000.03.003
    [44] MEI J, MA G, YANG M, et al. Dark acoustic metamaterials as super absorbers for low-frequency sound[J]. Nature Communications,2012,3:756. doi: 10.1038/ncomms1758
    [45] MA G, YANG M, XIAO S, et al. Acoustic metasurface with hybrid resonances[J]. Nature Materials,2014,13(9):873-878. doi: 10.1038/nmat3994
    [46] LI Y, ASSOUAR B M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness[J]. Applied Physics Letters,2016,108(6):063502. doi: 10.1063/1.4941338
    [47] CAI X, GUO Q, HU G, et al. Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators[J]. Applied Physics Letters,2014,105(12):121901. doi: 10.1063/1.4895617
    [48] ZHANG C, HU X. Three-dimensional single-port labyrinthine acoustic metamaterial: Perfect absorption with large bandwidth and tunability[J]. Physical Review Applied,2016,6(6):064025. doi: 10.1103/PhysRevApplied.6.064025
    [49] LIU L, CHANG H, ZHANG C, et al. Single-channel labyrinthine metasurfaces as perfect sound absorbers with tunable bandwidth[J]. Applied Physics Letters,2017,111(8):083503. doi: 10.1063/1.4986142
    [50] 李东庭, 黄思博, 莫方朔, 等. 基于微穿孔板和卷曲背腔复合结构的低频宽带吸声体[J]. 科学通报, 2020, 65(15):1420-1427. doi: 10.1360/TB-2019-0703

    LI Dongting, HUANG Sibo, MO Fangshuo, et al. Low-frequency broadband absorbers based on coupling micro-perforated panel and space-curling chamber[J]. Chinese Science Bulletin,2020,65(15):1420-1427(in Chinese). doi: 10.1360/TB-2019-0703
    [51] YANG M, CHEN S, FU C, et al. Optimal sound-absorbing structures[J]. Materials Horizons,2017,4:673-680.
    [52] MAK H Y, ZHANG X, DONG Z, et al. Going beyond the causal limit in acoustic absorption[J]. Physical Review Applied,2021,16(4):044062. doi: 10.1103/PhysRevApplied.16.044062
    [53] YANG M, SHENG P. Sound absorption structures: From porous media to acoustic metamaterials[J]. Annual Review of Materials Research,2017,47(1):83-114. doi: 10.1146/annurev-matsci-070616-124032
    [54] ZHOU Z, HUANG S, LI D, et al. Broadband impedance modulation via non-local acoustic metamaterials[J/OL]. National Science Review, 2021, 9(8): nwab171.[2022-07-30]. https://academic.oup.com/nsr/advance-article/doi/10.1093/nsr/nwab171/6368878?login=true.
    [55] HUANG S, FANG X, WANG X, et al. Acoustic perfect absorbers via spiral metasurfaces with embedded apertures[J]. Applied Physics Letters,2018,113(23):233501. doi: 10.1063/1.5063289
    [56] HUANG S, FANG X, WANG X, et al. Acoustic perfect absorbers via Helmholtz resonators with embedded apertures[J]. Journal of the Acoustical Society of America,2019,145(1):254-256. doi: 10.1121/1.5087128
    [57] HUANG S, ZHOU Z, LI D, et al. Compact broadband acoustic sink with coherently coupled weak resonances[J]. Science Bulletin,2020,65(5):373-379. doi: 10.1016/j.scib.2019.11.008
    [58] YANG T, ZHOU S, FANG S, et al. Nonlinear vibration energy harvesting and vibration suppression technologies: Designs, analysis, and applications[J]. Applied Physics Reviews,2021,8(3):031317. doi: 10.1063/5.0051432
    [59] 杨涛, 周生喜, 曹庆杰, 等. 非线性振动能量俘获技术的若干进展[J]. 力学学报, 2021, 53(11):2894-2909. doi: 10.6052/0459-1879-21-474

    YANG Tao, ZHOU Shengxi, CAO Qingjie, et al. Some advances in nonlinear vibration energy harvesting technology[J]. Chinese Journal of Theoretical and Applied Mechanics,2021,53(11):2894-2909(in Chinese). doi: 10.6052/0459-1879-21-474
    [60] WEN Z, WANG W, KHELIF A, et al. A perspective on elastic metastructures for energy harvesting[J]. Applied Physics Letters,2022,120(2):020501. doi: 10.1063/5.0078740
    [61] QI S, OUDICH M, LI Y, et al. Acoustic energy harvesting using an electromechanical Helmholtz resonator[J]. Applied Physics Letters,2016,108:263501. doi: 10.1063/1.4954987
    [62] JO S H, YOON H, SHIN Y C, et al. Elastic wave localization and harvesting using double defect modes of a phononic crystal[J]. Journal of Applied Physics,2020,127(16):164901. doi: 10.1063/5.0003688
    [63] DE PONTI J M, COLOMBI A, ARDITO R, et al. Graded elastic metasurface for enhanced energy harvesting[J]. New Journal of Physics,2020,22(1):013013. doi: 10.1088/1367-2630/ab6062
    [64] JIN Y, DJAFARI-ROUHANI B, TORRENT D. Gradient index phononic crystals and metamaterials[J]. Nanophotonics,2019,8(5):685-701. doi: 10.1515/nanoph-2018-0227
    [65] JIN Y, TORRENT D, DJAFARI-ROUHANI B. Invisible omnidirectional lens for flexural waves in thin elastic plates[J]. Journal of Physics D: Applied Physics,2017,50(22):225301. doi: 10.1088/1361-6463/aa6c98
    [66] JIN Y, TORRENT D, PENNEC Y, et al. Multimodal and omnidirectional beam splitters for Lamb modes in elastic plates[J]. AIP Advances,2016,6(12):121602. doi: 10.1063/1.4971213
    [67] JIN Y, KUMAR R, PONCELET O, et al. Flat acoustics with soft gradient-index metasurfaces[J]. Nature Communications,2019,10(1):143. doi: 10.1038/s41467-018-07990-5
    [68] JIN Y, TORRENT D, PENNEC Y, et al. Gradient index devices for the full control of elastic waves in plates[J]. Scientific Reports,2016,6:24437. doi: 10.1038/srep24437
    [69] JIN Y, TORRENT D, PENNEC Y, et al. Simultaneous control of the S0 and A0 Lamb modes by graded phononic crystal plates[J]. Journal of Applied Physics,2015,117(24):244904. doi: 10.1063/1.4923040
    [70] WANG W, IGLESIAS J, JIN Y, et al. Experimental realization of a pillared metasurface for flexural wave focusing[J]. APL Materials,2021,9(5):051125. doi: 10.1063/5.0052278
    [71] JIN Y, WANG W, KHELIF A, et al. Elastic metasurfaces for deep and robust subwavelength focusing and imaging[J]. Physical Review Applied,2021,15(2):024005. doi: 10.1103/PhysRevApplied.15.024005
    [72] JIN Y, BONELLO B, MOISEYENKO R P, et al. Pillar-type acoustic metasurface[J]. Physical Review B,2017,96(10):104311. doi: 10.1103/PhysRevB.96.104311
    [73] XIAO M, MA G, YANG Z, et al. Geometric phase and band inversion in periodic acoustic systems[J]. Nature Physics,2015,11(3):240-244. doi: 10.1038/nphys3228
    [74] ZHANG X, XIAO M, CHENG Y, et al. Topological sound[J]. Communications Physics,2018,1(1):97. doi: 10.1038/s42005-018-0094-4
    [75] CHAPLAIN G J, DE PONTI J M, AGUZZI G, et al. Topological rainbow trapping for elastic energy harvesting in graded Su-Schrieffer-Heeger systems[J]. Physical Review Applied,2020,14(5):054035. doi: 10.1103/PhysRevApplied.14.054035
    [76] WEN Z, JIN Y, GAO P, et al. Topological cavities in phononic plates for robust energy harvesting[J]. Mechanical Systems and Signal Processing,2022,162:108047. doi: 10.1016/j.ymssp.2021.108047
    [77] GAO P, TORRENT D, CERVERA F, et al. Majorana-like zero modes in kekule distorted sonic lattices[J]. Physical Review Letters,2019,123(19):196601. doi: 10.1103/PhysRevLett.123.196601
    [78] WEN Z, ZENG S, WANG D, et al. Robust edge states of subwavelength chiral phononic plates[J]. Extreme Mechanics Letters,2021,44:101209. doi: 10.1016/j.eml.2021.101209
    [79] JIN Y, ZENG S, WEN Z, et al. Deep-subwavelength lightweight metastructures for low-frequency vibration isolation[J]. Materials & Design,2022,215:110499.
    [80] REN Z, CHENG Y, CHEN M, et al. A compact multifunctional metastructure for Low-frequency broadband sound absorption and crash energy dissipation[J]. Materials & Design,2022,215:110462.
    [81] WANG D W, MA L, WANG X T, et al. Sound transmission loss of laminated composite sandwich structures with pyramidal truss cores[J]. Composite Structures,2019,220:19-30. doi: 10.1016/j.compstruct.2019.03.077
    [82] WANG D W, MA L. Sound transmission through composite sandwich plate with pyramidal truss cores[J]. Composite Structures,2017,164:104-117. doi: 10.1016/j.compstruct.2016.11.088
    [83] WANG D W, MA L, WEN Z H. Sound transmission through a sandwich structure with two-layered pyramidal core and cavity absorption[J]. Journal of Sound and Vibration,2019,459:114853. doi: 10.1016/j.jsv.2019.114853
    [84] WANG D W, WEN Z H, GLORIEUX C, et al. Sound absorption of face-centered cubic sandwich structure with micro-perforations[J]. Materials & Design,2020,186:108344.
    [85] WEN Z H, WANG D W, MA L. Sound transmission loss of sandwich panel with closed octahedral core[J]. Journal of Sandwich Structures & Materials,2019,23(1):174-193.
    [86] XU X, WU Q, PANG Y, et al. Multifunctional metamaterials for energy harvesting and vibration control[J]. Advanced Functional Materials,2021,32(7):2107896.
    [87] JIN M, LIANG B, YANG J, et al. Ultrathin planar metasurface-based acoustic energy harvester with deep subwavelength thickness and mechanical rigidity[J]. Scientific Reports,2019,9(1):11152. doi: 10.1038/s41598-019-47649-9
    [88] GU Z, GAO H, CAO P C, et al. Controlling sound in non-hermitian acoustic systems[J]. Physical Review Applied,2021,16(5):057001. doi: 10.1103/PhysRevApplied.16.057001
    [89] 易凯军, 陈洋洋, 朱睿, 等. 力电耦合主动超材料及其弹性波调控[J]. 科学通报, 2022, 67(12):1290-1304.

    YI Kaijun, CHEN Yangyang, ZHU Rui, et al. Electromechanical active metamaterials and their applications in controlling elastic wave propagation[J]. Chinese Science Bulletin,2022,67(12):1290-1304(in Chinese).
  • 加载中
图(11)
计量
  • 文章访问数:  1161
  • HTML全文浏览量:  398
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-24
  • 修回日期:  2022-07-01
  • 录用日期:  2022-07-08
  • 网络出版日期:  2022-07-13
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回