留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BNmf-Si3N4w/Si3N4复合材料的制备与性能

崔雪峰 赵凯 王玉生 叶昉 成来飞

崔雪峰, 赵凯, 王玉生, 等. BNmf-Si3N4w/Si3N4复合材料的制备与性能[J]. 复合材料学报, 2022, 39(9): 4375-4383. doi: 10.13801/j.cnki.fhclxb.20220630.005
引用本文: 崔雪峰, 赵凯, 王玉生, 等. BNmf-Si3N4w/Si3N4复合材料的制备与性能[J]. 复合材料学报, 2022, 39(9): 4375-4383. doi: 10.13801/j.cnki.fhclxb.20220630.005
CUI Xuefeng, ZHAO Kai, WANG Yusheng, et al. Preparation and properties of BNmf-Si3N4w/Si3N4 composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4375-4383. doi: 10.13801/j.cnki.fhclxb.20220630.005
Citation: CUI Xuefeng, ZHAO Kai, WANG Yusheng, et al. Preparation and properties of BNmf-Si3N4w/Si3N4 composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4375-4383. doi: 10.13801/j.cnki.fhclxb.20220630.005

BNmf-Si3N4w/Si3N4复合材料的制备与性能

doi: 10.13801/j.cnki.fhclxb.20220630.005
基金项目: 国家自然科学基金(52072304);国家科技重大专项(2017-VI-0007-0077);高等学校学科创新引智计划(B08040)
详细信息
    通讯作者:

    叶昉,博士,副教授,博士生导师,研究方向为陶瓷基复合材料 E-mail: yefang511@nwpu.edu.cn

    成来飞,博士,教授,博士生导师,研究方向为陶瓷基复合材料 E-mail: chenglf@nwpu.edu.cn

  • 中图分类号: TB332

Preparation and properties of BNmf-Si3N4w/Si3N4 composites

  • 摘要: 为制备一种介电性能和力学性能优异的高温透波材料,采用凝胶注模(GC)结合先驱体浸渍裂解(PIP)工艺制备了BNmf-Si3N4w/Si3N4复合材料。研究了浸渍裂解次数及BNmf含量对复合材料的力学性能与介电性能的影响。结果表明:(1) 随着PIP循环次数增加,复合材料的密度增大,气孔率降低,氮化硅基体逐渐形成三维网络结构包裹在复相微米增强体周围,复合材料力学性能提升;(2) 当BNmf含量从4vol%增加到12vol%时,弯曲强度从175.5 MPa降低到139.3 MPa,断裂韧性从2.36 MPa·m1/2增加到2.73 MPa·m1/2,介电常数从3.62下降到3.25,介电损耗角正切从0.012下降到0.007;(3) BNmf-Si3N4w/Si3N4复合材料的强韧化机制主要为裂纹分叉、裂纹偏转及BNmf及Si3N4w的拔出,三种机制有效降低主裂纹对复合材料的损害。

     

  • 图  1  先驱体浸渍裂解(PIP)过程的增重率及其次数对BNmf-Si3N4w/Si3N4复合材料开气孔率和密度的影响

    Figure  1.  Effect of mass gain rate of precursor infiltration pyrolysis (PIP) process and its number on the open porosity and density of BNmf-Si3N4w/Si3N4 composites

    图  2  不同PIP循环次数的 BNmf-Si3N4w/Si3N4复合材料断口的SEM图像:(a) SC41;(b) SC43;(c) SC45

    Figure  2.  SEM images of fracture morphology of BNmf-Si3N4w/Si3N4 composites materials with different PIP cycles: (a) SC41; (b) SC43; (c) SC45

    图  3  不同PIP循环次数的BNmf-Si3N4w/Si3N4复合材料的力学性能测试曲线:(a) 断裂韧性的载荷-位移曲线;(b) 三点弯的应力-位移曲线

    Figure  3.  Mechanical properties measurement curves of BNmf-Si3N4w/Si3N4 composites with different PIP cycles: (a) Load-displacement curves of fracture toughness samples; (b) Stress-displacement curves of three-point bending samples

    图  4  不同PIP循环次数的BNmf-Si3N4w/Si3N4复合材料的力学性能:(a) 断裂韧性;(b) 三点弯曲强度

    Figure  4.  Mechanical properties comparison of BNmf-Si3N4w/Si3N4 composites with different PIP cycles: (a) Fracture toughness; (b) Three-point flexural strength

    图  5  不同增强体配比BNmf-Si3N4w/Si3N4复合材料的XRD图谱

    Figure  5.  XRD patterns of BNmf-Si3N4w/Si3N4 composites with different reinforcement ratios

    图  6  不同增强体配比BNmf-Si3N4w/Si3N4复合材料抛光表面的SEM图像:(a) 4vol%BNmf-36vol%Si3N4w;(b) 8vol%BNmf-32vol%Si3N4w;(c) 12vol%BNmf-28vol%Si3N4w

    Figure  6.  SEM images of polished surfaces of BNmf-Si3N4w/Si3N4 composite materials with different reinforcement ratios: (a) 4vol%BNmf-36vol%Si3N4w; (b) 8vol%BNmf-32vol%Si3N4w; (c) 12vol%BNmf-28vol%Si3N4w

    图  7  不同增强体配比BNmf-Si3N4w/Si3N4复合材料的力学性能测试曲线:(a) 断裂韧性载荷-位移曲线;(b) 三点弯应力-位移曲线

    Figure  7.  Mechanical properties measurement curves of BNmf-Si3N4w/Si3N4 composites with different reinforcement ratios: (a) Load-displacement curves of fracture toughness samples; (b) Stress-displacement curves of three-point bending samples

    图  8  不同增强体配比BNmf-Si3N4w/Si3N4复合材料的力学性能:(a) 断裂韧性;(b) 三点弯曲强度

    Figure  8.  Mechanical properties of BNmf-Si3N4w/Si3N4 composites with different reinforcement ratios: (a) Fracture toughness; (b) Three-point flexural strength

    图  9  BNmf-Si3N4w/Si3N4复合材料的断口表面形貌:((a)~(c)) 裂纹在试样中扩展路径;(d) 裂纹横截面

    Figure  9.  SEM images of fracture surface morphologies of BNmf-Si3N4w/Si3N4 composites: ((a)-(c)) Crack propagation; (d) Crack cross section

    图  10  不同增强体配比BNmf-Si3N4w/Si3N4复合材料的介电性能

    Figure  10.  Dielectric properties of BNmf-Si3N4w/Si3N4 composites with different reinforcement ratios

    表  1  BNmf-Si3N4w预制体的命名

    Table  1.   Naming of BNmf-Si3N4w preform

    BNmf/vol% PIP cycles
    SC41 4 1
    SC43 4 3
    SC45 4 5
    SC85 8 5
    SC124 12 5
    Note: PIP—Precursor infiltration pyrolysis.
    下载: 导出CSV
  • [1] JOHNSON C R, JASIK H. Antenna engineering handbook[M]. New York: McGraw-Hill Book Company,1984.
    [2] ZHANG X Y, LI N, LAN T, et al. In-situ reaction synthesis of porous Si2N2O-Si3N4 multiphase ceramics with low dielectric constant via silica poly-hollow microspheres[J]. Ceramics International,2017,43:4235-4240.
    [3] 彭望泽. 防空导弹天线罩[M]. 北京: 中国航天出版社, 1993.

    PENG Wangze. Air defense missile radome[M]. Beijing: China Astronautic Publishing House, 1993(in Chinese).
    [4] 杜耀惟. 天线罩电信设计方法[M]. 北京: 国家工业出版社, 1993.

    DU Yaowei. The design method of telecom radome[M]. Beijing: National Defence Industry Press, 1993(in Chinese).
    [5] 杨洁颖, 吕毅, 张春波, 等. 飞行器用透波材料及天线罩技术研究进展[J]. 宇航材料工艺, 2015(4):6-9.

    YANG Jieying, LV Yi, ZHANG Chunbo, et al. Improvements of microwave transparent composites and aircraft radome[J]. Aerospace Materials & Technology,2015(4):6-9(in Chinese).
    [6] 柳敏静, 郭东明, 康仁科, 等. 天线罩系统电气性能分析[J]. 大连理工大学学报, 2005, 45(1):39-44.

    LIU Minjing, GUO Dongming, KANG Renke, et al. Analytical method of electrical performance of antenna radome system[J]. Journal of Dalian University of Technology,2005,45(1):39-44(in Chinese).
    [7] 卢嘉德. 固体火箭发动机复合材料技术的进展及其应用前景[J]. 固体火箭技术, 2001, 24(1):46-52.

    LU Jiade. The progress and application prospect of composite techniques for SRM[J]. Journal of Solid Rocket Technology,2001,24(1):46-52(in Chinese).
    [8] 庄南征, 闭业波, 张啸天. 雷达天线罩电性能设计和结构设计分析[C]. 第十八届玻璃钢/复合材料学术年会论文集, 北京: 中国硅酸盐学会, 2010.

    ZHUANG Nanzheng, BI Yebo, ZHANG Xiaotian. Analysis on the electrical properties and structure design of radome[C]. Proceedings of the 18th Annual FRP/Composites Conference, Beijing: The Chinese Ceramic Society, 2010(in Chinese).
    [9] 沈强, 陈斐, 闫法强, 等. 新型高温陶瓷天线罩材料的研究进展[J]. 材料导报, 2006, 20(9):1-4.

    SHEN Qiang, CHEN Fei, YAN Faqiang, et al. Progress on new type high temperature ceramic missiles radome materials[J]. Materials Review,2006,20(9):1-4(in Chinese).
    [10] 沈观林, 胡更开. 复合材料力学[M]. 北京: 清华大学出版社, 2006.

    SHEN Guanlin, HU Gengkai. mechanics of composit materials[M]. Beijing: Tsinghua University Press, 2006(in Chinese).
    [11] 陈虹, 胡利明, 贾光耀, 等. 陶瓷天线罩材料的研究进展[J]. 硅酸盐通报, 2002, 21(4):40-44.

    CHEN Hong, HU Liming, JIA Guangyao, et al. Progress on the radome materials of ceramic for missiles[J]. Bulletin of the Chinese Ceramic Society,2002,21(4):40-44(in Chinese).
    [12] 李端, 张长瑞, 李斌, 等. 氮化硼透波材料的研究进展与展望[J]. 硅酸盐通报, 2010, 29(5):1072-1078, 1085.

    LI Duan, ZHANG Changrui, LI Bin, et al. Progress and prospect of wave-transparent boron nitride materials[J]. Bulletin of the Chinese Ceramic Society,2010,29(5):1072-1078, 1085(in Chinese).
    [13] 胡伟, 邬浩, 王萍萍, 等. 陶瓷天线罩材料的研制进展[J]. 玻璃钢, 2010(3):16-23.

    HU Wei, WU Hao, WANG Pingping, et al. Progress on the radome materials of ceramic for missiles[J]. Fiber Reinforced Plastics/Composites,2010(3):16-23(in Chinese).
    [14] OOI N, RAJAN V, GOTTLIEB J, et al. Structural properties of hexagonal boron nitride[J]. Modelling & Simulation in Materials Science & Engineering, 2006, 14(3): 515–535.
    [15] JANNEY M A, OMATETE O O, WALLS C A, et al. Westmoreland, development of low-toxicity gelcasting systems[J]. Journal of the American Ceramic Society, 1998, 81(3): 581–591.
    [16] GILISSEN R, ERAUW J P, SMOLDERS A, et al. Gelcasting, a near net shape technique[J]. Materials & Design, 2000, 21(4): 251–257.
    [17] 郭文利, 徐廷献, 李爱华. 纳米氮化硅制备天线罩材料介电性能的研究[J]. 硅酸盐学报, 2003, 31(7):698-701.

    GUO Wenli, XU Tingxian, LI Aihua. Research on the dielectric properties of radome material made with nanometer silicon nitride[J]. Journal of the Chinese Ceramic Society,2003,31(7):698-701(in Chinese).
    [18] 薛义丹, 徐廷献, 郭文利, 等. 注凝成型(gelcasting)工艺及其新发展[J]. 硅酸盐通报, 2003, 22(5):69-73.

    XUE Yidan, XU Tingxian, GUO Wenli, et al. Technology of gelcasting and its development[J]. Bulletin of the Chinese Ceramic Society,2003,22(5):69-73(in Chinese).
    [19] CHEW K W, SELLINGER A, LAINE R M. Processing aluminum nitride-silicon carbide composites via polymer infiltration and pyrolysis of polymethylsilane[J]. Journal of the American Ceramic Society,2010,82(4):857-866.
    [20] NAMAZU T, ISHIKAWA T, HASEGAWA Y. Influence of polymer infiltration and pyrolysis process on mechanical strength of polycarbosilane-derived silicon carbide ceramics[J]. Journal of Materials Science,2011,46(9):3046-3051.
    [21] NECHANICKY M A, CHEW K W, SELLINGER A, et al. α-Silicon carbide/β-silicon carbide particulate composites via polymer infiltration and pyrolysis (PIP) processing using polymethylsilane[J]. Journal of the European Ceramic Society,2000,20(4):441-451.
    [22] GONCHARENKO A V, LOZOVSKI V Z, VENGER E F. Lichtenecker’s equation: Applicability and limitations[J]. Optics Communications,2000,174(1-4):19-32.
    [23] REGALADO C M. A physical interpretation of logarithmic TDR calibration equations of volcanic soils and their solid fraction permittivity based on Lichtenecker’s mixing formulae[J]. Geoderma,2004,123(1-2):41-50.
    [24] 国家质量技术监督局. 致密定形耐火制品体积密度、显气孔率和真气孔率试验方法: GB/T2997—2000[S]. 北京: 中国标准出版社, 2000.

    State bureau of quality and technical supervision. Test method for bulk density, apparent porosity and true porosity of dense shaped refractory products: GB/T2997—2000[S]. Beijing: China Standards Press, 2000(in Chinese).
    [25] LI M, ZHANG C, YE F, et al. Evolution of microstructure and properties of Si3N4 whisker reinforced composites during densification by polymer infiltration and pyrolysis[J]. Journal of the European Ceramic Society,2022,42:2146-2156.
    [26] 马茸茸, 张电, 刘一军, 等. 多孔氮化硅陶瓷的研究进展及构效关系中的矛盾平衡[J]. 材料导报, 2020, 34(9):9101-9109.

    MA Rongrong, ZHANG Dian, LIU Yijun, et al. Research progress and contradictory equilibrium of structure-perfor-mance relationship of porous silicon nitride ceramics[J]. Materials Reports,2020,34(9):9101-9109(in Chinese).
    [27] 崔雪峰, 李建平, 李明星, 等. 氮化物基陶瓷高温透波材料的研究进展[J]. 航空材料学报, 2020, 40(1):21-34.

    CUI Xuefeng, LI Jianping, LI Mingxing, et al. Research progress of nitride based ceramic high temperature wave transparent materials[J]. Journal of Aeronautical Materials,2020,40(1):21-34(in Chinese).
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  623
  • HTML全文浏览量:  295
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-13
  • 修回日期:  2022-06-06
  • 录用日期:  2022-06-24
  • 网络出版日期:  2022-07-04
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回